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Abstract 

In this paper, we combined Langrage Multiplier, Penalty Function and Conjugate Gradient Methods 

(CPLCGM), to enable Conjugate Gradient Method (CGM) to be employed for solving constrained 

optimization problems. In the year past, Langrage Multiplier Method (LMM) has been used extensively 

to solve constrained optimization problems likewise Penalty Function Method (PFM). However, with 

some special features in CGM, which makes it unique in solving unconstrained optimization problems, 

we see that this features we be advantageous to solve constrained optimization problems if it can be 

properly amended. This, then call for the CPLCGM that is aimed at taking care of some constrained 

optimization problems, either with equality or inequality constraint but in this paper, we focus on 

equality constraints. The authors of this paper desired that, with the construction of the new Algorithm, it 

will circumvent the difficulties undergone using only LMM and as well as PFM to solve constrained 

optimization problems and its application will further improve the result of the Conjugate Gradient 

Method in solving this class of optimization problem. We applied the new algorithm to some constrained 

optimization problems and compared the results with the LMM and PFM.   
 

Keywords: Lagrange multiplier method, Constrained optimization problem, Conjugate gradient algorithm, Penalty function 
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1. Introduction 
The basic problem to be considered in this paper is the minimization of a function subject to equality and 

inequality constraints of the form: 

                      1.1a 

                                    1.1b 

                           1.1c 

Where   is a vector of   variables      is the objective function to be minimized,        a set of inequality 

constraints and         a set of equality constraints which are twice differentiable. [6] 

 

2. Lagrange Multiplier Method (LMM) 
In mathematical optimization, the method of Lagrange Multipliers (named after Joseph Louis Lagrange) 

provides a strategy for finding the maximum/minimum of a function subject to constraints. The Lagrange multiplier 

method was basically introduced to solve constrained optimization problems with equality constraints of the form 

(1.1a) and (1.1c) and the theorem associated with Lagrange Multiplier Method states that: 

If    affords a local minimum to      subject to the constraints        , then there exists a unique set of 

multipliers  

                   such that: 

             ∑         
           2.1a 

then, 

                   ∑           
          2.1b 

and  

            
   (  

    
 
 )

    
 

                    2.1c 

Where   denotes the gradient of the function and     denotes the second derivatives of        by Hestenes 

(1975). 

Equation (2.1b) and (2.1c) are the necessary conditions for locally constrained minima. Equation (2.1b) and the 

feasibility condition (2.1b) constitute the Kuhn-Tucker necessary conditions for optimality. It is assumed that      

and       are second order differentiable and that the gradients        are not zero at   . 

The problem can now be stated in terms of the equivalent classical Lagrangian as: 

                           2.2a 

                                        2.2b 

Assuming the existence of the saddle points of the Lagrangian      , the following condition exists: 

                   (     )       2.3 

The optimal pair         can be obtained by first minimizing        with respect to  , then maximizing 

 (    ) with respect to   by updating equation: 

  
   

     
 

      ( 
 )          2.4 

Where    is a scalar parameter (step size),   is the iteration number and    is the local minimum of  (     ). 

The procedure is repeated until convergence is attained. This is also called “primal-dual” method. 

Serious disadvantages are encountered in the primal-dual method.  

First, the problem (2.3) must have a locally convex structure for the dual problem to be well defined and for (2.4) 

to be meaningful (Luenberger, 1973). 

Second, a large number of iterations are usually required to minimize (2.1a). since the ascent iteration (2.4) 

converges only moderately fast.  

Because of this, primal-dual methods have found application in a limited class of problems where minimization 

of the Lagrangian (2.1a) can be efficiently carried out due to special structure, as shown by Luenberger (1973) or 

where the design problem exhibits a unique form, as shown by Schmit and Fleury (1979). 

 

3. Penalty Function Method (PFM) 
Penalty Function Methods have been used extensively since the mid-1940,  Pierre and Lowe (1975) considered 

PFM to be efficient for inequality constrained problems such as equation (1.1a) with respect to (1.1b).  

Considering (1.1a) and (1.1b) the general Exterior Penalty Function for this class of problem is defined as: 

 (    )        ∑      
 
           3.1 

Where       in (3.1) is some scalar of the Penalty Function Method of the constraints and   is the penalty 

parameter. 

Now, the most common PFM is the quadratic type where       in (3.1) is defined as:      
  

 
. However, it may 

be desirable at times to use other PFM.  

The Quadratic Penalty Function of (1.1a) with respect to (1.1b) is given as: 

 (    )       
 

 
∑   

     
 
           3.2 

where 

  
     {

                    
                  

 

(3.1) and (3.2) are now an unconstrained minimization.  
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We need to note that as   in (3.1) and (3.2) gets larger, the function values changes more rapidly and the 

optimum becomes more difficult to find regardless of the minimization techniques. This causes the numerical ill-

conditioning inherent with Penalty Methods. 

Interior Penalty Function Method has the advantage of approaching the optimum from the feasible region thus, 

yielding a feasible solution. However, the penalty function is discontinuous at the constraint boundaries.  

The Interior Penalty Function form of (1.1a) with respect to (1.1b) is defined as: 

           
 

 
∑

 

     
 
            3.3 

We discovered that both Exterior and Interior Penalty  Function exhibit the same problem of ill-conditioning and 

slow convergence, the exact solution is not possible but the solution achieved is feasible. 

 

4. Conjugate Gradient Method (CGM) 
The development of the Conjugate Gradient Method (CGM) algorithm for solving algebraic equations can be 

traced to Hestenes and Stiefel (1952) which was successfully applied to nonlinear equations with results reported by 

Fletcher and Reeves in 1964.  

The CGM algorithm for iteratively locating the minimum     of       in ℋ is described as follows:  

Step 1: Guess the first element    ϵ ℋ and compute the remaining members of the sequence with the aid of the 

formulae in the steps 2 through 6. 

Step 2: Compute the descent direction                      

Step 3:   Set                 ; where    =  
〈      〉ℋ

〈       〉ℋ
          

Step 4: Compute                                        

Step 5: Set                  ;       
〈           〉ℋ

〈      〉ℋ
             

Step 6: If         for some i, then, terminate the sequence; else set         and go to step 3. 

In the iterative steps 2 through 6 above,     denotes the descent direction at     step of the algorithm,   , is the 

step length of the descent sequence  {  } and     denotes the gradient of   at   . Steps 3, 4 and 5 of the algorithm 

reveal the crucial role of the linear operator G in determining the step length of the descent sequence and also in 

generating a conjugate direction of search. Applicability of the CGM algorithm thus depends on the knowledge of 

the linear operator G. 

Generally, for optimization problems, G is readily determined and such enjoys the beauty of the CGM as a 

computational scheme since the CGM exhibits quadratic convergence and requires only a little computation per 

iteration. 

Since so many researchers have worked on CGM, for the effort expended by these researchers in constructing 

the control operator and even the method in question (CGM) not to be limited to solving this class of problems alone, 

the desire to combination of the Lagrange multiplier method (LMM), the Penalty Function Method and the 

Conjugate Gradient Method (CGM) for solving Constrained Optimization Problems was borne out and the resulting 

algorithm is as follows   

 

5. Combination of Penalty Function, Lagrange Multiplier and Conjugate Gradient 

Methods (CPLCGM) 
The Lagrange multiplier method can be perceived to be a combined primal-dual and Penalty Function Methods. 

Though they are theoretically similar but their behavior is quite different. 

It has been shown that the original equality constrained problem (1.1a) with (1.1c) is equivalent to the classical 

Lagrangian (1.3).  Since (1.3) is still an equality constrained problem, it can be solved by the usual Exterior Penalty 

Function method. The Quadratic Penalty Function is used so that first derivatives are continuous. Substituting (1.3) 

into (3.2) we have: 

                
 

 
∑  

     

 

   

 

       ∑         
    

 

 
∑   

     
 
             5.1 

where             

Equation (5.1) is referred to as Augmented Lagrange Function for the equality constrained problem. 

Now, we want to extend this discussion to include inequality constraints. 

Considering (1.1a) with respect to (1.1b) introducing slack variables, (1.1b) becomes: 

        
             5.2 

Where   
  in (5.2) is the slack variable for the     constraints. The problem is now an equality constrained 

problem of the form (1.1a) with respect to (1.1c); however, the number of design variables will  increase to   

  and (5.2) becomes: 

                 ∑            
   

    
 

 
∑           

    
            5.3 

If the number of constraints,  , in (5.3) is much greater than the number of design variables as is often the case in 

engineering design problems, the unconstrained minimization problem is sizable. The scope of the problem can, 

however, be reduced by eliminating the slack variables,   
 , by first minimizing (5.3) with respect to  . For a local 

minimum to exist, the stationary conditions: 
  

   
                              5.4 
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must hold. Differentiating (5.3) we have: 

 
  

   
                 

        

From (5.4) we have that 

                  
                  5.5 

The solution to (5.5) is: 

             
and also, 

              
     

    
             

Therefore, 

   
  

          

 
 

  
   

  

 
                     5.6 

Since   
    is meaningless, the solution becomes: 

  
                

  

 
              5.7 

(5.7) shows that    is no longer an independent variable. From this (5.7) it is observed that if       is a critical 

constraint,      and if otherwise,     . Therefore: 

        
               

  

 
            5.8 

with the slack variables eliminated, the augmented Lagrangian becomes: 

              ∑ (     
 

 
  

    *
 

 
 

 
           5.9 

where  

                 
  

 
  

Equation (5.9) is referred to as Rockafellar’s augmented Lagrange Function. 

It must be noted that since we have succeeded in converting inequality constrained problem to an equivalent 

equality constrained problem, it invariably mean that the convergence properties are identical. 

At this junction, we now apply one of the methods used for solving unconstrained optimization problem which is 

Conjugate Gradient Method with some modification to suit a constrained optimization problem and this resulted to 

the following steps: 

 

6. Combination of Penalty Method, the Lagrange Multiplier Method and the 

Conjugate Gradient Method (CPLCGM) Algorithm 
Haven investigated these methods; we now draw out the following steps which will be used to solve some 

constrained optimization problems. The steps are as follows: 

Step 1: Choose an Lagrange Multiplier     , Penalty parameter      and guess the initial elements   . 

Step 2: Formulate the unconstrained minimization problem: 

                   ∑ (     
 

 
  

    * 
     ∑ (        

 

 
  

    *     
    

where                 
  

 
  

Step 3: Compute the initial gradient,     as well as the initial descent direction,         

Step 4: Compute the Hessian Matrix,   , in step 2  

Step 6: Set                

           
  

   

  
    

                

Step 7: Update the gradient using: 

                                 
Step 8: Update the descent direction using:    

                   

            
  

       

  
   

                     

  Step 9: If       stop, else, set         and return to step 6. 

 

7. Mathematical Computation of CPLCGM for Equality Contraint 
Considering (1.1) and (1.3), there exists a Lagrange Multiplier   which imbed (1.3) into (1.1) to give a 

Lagrangian function such as: 

 (    )        ∑         
    ∑

 

 
  

     
             7.1 

Where       

Let the initial guess be: 
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(

 
 
 

     

     

 
 
 

     )

 
 
 

                    7.2 

    

(

 
 
 

     

     

 
 
 

     )

 
 
 

                   7.3 

    

(

 
 
 

     

     

 
 
 

     )

 
 
 

                   7.4 

Putting (7.2), (7.3) and (7.4) in (7.1) and (5.6) respectively gives the initial functions values i.e.       and 

          .  

Computing the gradient of (7.1) with respect to (             ) 
 

 we have: 

(

 
 
 
 
 

 

   
         

 

   
     

 

   
∑         

    
 

   
∑ (

 

 
  

     ) 
   

 

   
         

 

   
     

 

   
∑         

    
 

   
∑ (

 

 
  

     ) 
   

 
 
 

 

   
         

 

   
     

 

   
∑         

    
 

   
∑ (

 

 
  

     ) 
   )

 
 
 
 
 

     7.5 

Putting (7.2) through (7.4) in (7.5) gives us the initial gradient as: 

 

    

(

 
 
 
 
 

 

   
           

 

   
           

 
 
 

 

   
           )

 
 
 
 
 

                7.6 

Multiplying (7.6) by negative gives the decent direction as: 

       

(

 
 
 
 
 

 
 

   
           

 
 

   
           

 
 
 

 
 

   
           )

 
 
 
 
 

              7.7 

 

Computing the Hessian Matrix of (7.1) using (7.5) gives: 

 

H = 

(

 
 
 
 
 
 
 

   (        )

   
 

   (        )

    
 
 
 

   (        )

    

 

 
   (        )

    
      

   (        )

   
 

       
 
 
 

   (        )

    
       

  

   (        )

    

   (        )

    
 
 
 

   (        )

    

 

)

 
 
 
 
 
 
 

            7.8 

 

On transposing (7.6) and (7.7) respectively, we have: 

 

   
  (

 

   
 (        )  

 

   
 (        )  

 

   
 (        ))

 

       7.9 
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and  

   
  ( 

 

   
 (        )  

 

   
 (        )   

 

   
 (        ))

 

     7.10 

Multiplying (7.6) and (7.9) gives us a scalar,   .i.e. 

 

     
   

  

 

   (
 

   
 (        )

 

   
 (       )  

 

   
 (        ))

 

(

 
 
 
 
 

 

   
          

 

   
           

 
 
 

 

   
          )

 
 
 
 
 

 

  ((
 

   
 (        ))

 

 (
 

   
 (        ))

 

    (
 

   
 (        ))

 

+

 

              7.11 

 

Similarly, multiplying (7.10), (7.8) and (7.7) gives a scalar, z .i.e. 

     
    

  

 

   
  

(

 
 
 
 
 
 
 

             

   
 

             

     
 
 

             

    

  

             

    
      

             

   
 

       

 
 
 

             

    
       

  

             

    

             

     
 
 

             

    

 

)

 
 
 
 
 
 
 

(

 
 
 
 
 
 

 
 

   
           

 
 

   
           

 
 
 

 
 

   
           )

 
 
 
 
 
 

 

  

(

 
 
 
 
 
 
 
 

   (        )

   
 

( 
 

   
 (        ))  

   (        )

    
( 

 

   
 (        ))  

 
 
 

   (        )

    
( 

 

   
 (        ))  

 

 
   (        )

    
( 

 

   
 (        ))         

   (        )

   
 

( 
 

   
 (        ))          

 
 
 

   (        )

    
( 

 

   
 (        ))          

  

   (        )

    
( 

 

   
 (        ))

   (        )

    
( 

 

   
 (        ))

 
 
 

   (        )

    
( 

 

   
 (        ))

 

)

 
 
 
 
 
 
 
 

 

 7.13 

 

putting (7.13) into (7.12) we have: 

   With matrix multiplication, (7.14) becomes: 
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dividing (7.11) and (7.15) .i.e.: 

    
((

 

   
 (        ))

 

 (
 

   
  (        ))

 

    (
 

   
 (        ))

 

+

(

 
 
 
 
 
 
 
 
 
  

 

   
 (        )(

   (    
 
   *

   
 

( 
 

   
 (        )) 

   (    
 
   *

    
( 

 

   
 (        ))        

   (    
 
   *

    
( 

 

   
 (        )),

 
 

   
 (        )(

   (    
 
   *

   
  

( 
 

   
 (        )) 

   (    
 
   *

   
 

( 
 

   
 (        ))        

   (    
 
   *

    
( 

 

   
 (        )),

   

 
 

   
 (        )(

   (    
 
   *

   
  

( 
 

   
 (        )) 

   (    
 
   *

    
( 

 

   
 (        ))        

   (    
 
   *

    
( 

 

   
 (        )),

)

 
 
 
 
 
 
 
 
 
 

 7.16 

 

(7.16) is the step length. Now set                                 . 
 

8. Data Analysis 
Haven developed the algorithm for Combination of Penalty Function, the Lagrange Multiplier and Conjugate 

Gradient Methods (CPLCGM), we now apply the method to some constrained optimization problems which are 

pertain to quadratic functions. Some of these functions are subject to linear, nonlinear and inequality constraints. The  

table of  results for these problems are shown below: 

Problem 1 

               
                             

                                            
  

Problem2 

          
     

    
   

     
     

  

                
    

    
 

Table-1. Table of Result for problem 1 

 

 Table 1, shows the numerical solution of problem 2. Using LPCGM, The problem converged at the 4
h
 iteration 

with: 

Calculated value = 4.66611907 

Analytical solution =             

The calculated value compares favourably with the analytical solution. This shows that the scheme developed in this 

paper is quite effective as well. 

Table-2. Table of Result for problem 2 

 

Table 2, shows the numerical solution of problem 2. Using LPCGM, The problem converged at the 4
h
 iteration with: 

Calculated value = -1.08333333 

Analytical solution =               

  It |     X(1)             |    X(2)           |    X(3)           |    X(4)              |    X(5)           |     FV             |     Alfa                |      G*GT      |      Beta    

  0  |   2               |  2               |2                |2                   |2                 |70               |0                         |0                    |0 

  1  |   1.78571607 |  0.92858033  |2.05357098    |1.75893057  |2.53570983    |12.4379783 |0.13392746e-1    |8596                |0 

  2  |   0.21699105    | -0.46953752  |4.20298643    |0.2823569        |-0.72421736   |-8.42598613   |0.51860834        |80.4613535      |0.9360325e-2 

  3  | -0.3647372      |-1.19577461    |4.99007296    |-0.24771488   |-1.54482321    |-2.83819616   |0.10832661e-1  |1248.13076     |15.512177 

  4   |-0.54175069    |-1.39354356    |5.32378142    |-0.36434898   |-1.5671256      |1.73663368     |0.19691487e-1  |144.268189     |0.1155874 

  5  | -1.43238023    |-1.69691014    |7.68095155    |-0.73402633   |-1.38843562    |4.66611907     |0.10509827        |115.292829    |0.79915628 

  It |     X(1)                     |    X(2)               |     FV                |     Alfa          |      G*GT        |   Beta     

  0  |      2                         |    3                     |  51                    |  0                   |  0                   |  0 

  1  |     0.61690962         |  -0.97638484    |   -0.26078717   |  0.1728863    |  593                |   0 

  2  |     0.2220446e-15    | -0.83333333     |    -1.08333333  | 0.24100618   |    6.82593409 |   0.1151085e-1 
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The calculated value compares favourably with the analytical solution. This shows that the scheme developed in this 

paper is quite effective as well. 

9. Conclusion 
Computationally, the resulting algorithm from the Combination of Penalty Function, the Lagrange Multiplier and 

Conjugate Gradient Methods was tested on some constrained optimization problems but in this paper, we recorded 

two as a sample of the problems tested. These problems are pertained to quadratic functions. Problem 1 and 2 are 

subject to linear and nonlinear constraints respectively. 

On using the function value as the terminating criterion, Problem 1 with the numerical value            which 

almost coincide with the analytical result        and problem 2 with the numerical result             when 

compare with the analytical result             , it invariably establishes the relevance of the new Algorithm for 

solving constrained optimization problems. All these points to the fact that, the constructed CPLCGM algorithm 

efficiently solve the problems and converges as supposed.  
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