Genetic Differentiation of ARC Soybean [Glycine Max (L.) Merrill] Accessions Based on Agronomic and Nutritional Quality Traits

Mofokeng, Maletsema Alina1 ; Mashingaidze, Kingstone2

1,2Agricultural Research Council-Grain Crops, Potchefstroom, South Africa

Abstract

Soybean is one of the most important leguminous crops grown globally for food and feed. The study of genetic diversity is invaluable for efficient utilization, conservation and management of germplasm collections. The study aims at assessing genetic diversity present among the soybean genotypes using phenotypic markers. The restriction maximum likelihood revealed highly significant differences among the genotypes for eight quantitative traits. The principal component analysis revealed three most important PCs contributing 63.19%, 25.43% and 8.88% to the total variation of 97.5%, respectively. Seed yield was highly significant and highly correlated with seed number per plant, pod weight per plant, pod number per plant, and hundred seed weight but negatively correlated with seed number per pod. The hierarchical clustering revealed three major clusters with further sub-clusters. The accessions 2015/06/12, 69 S 10, PR 154-14, R 5-4-2 M, Hawkeye (USSR), and PR 145-2 were the most diverse. There were significant differences among the accessions based on nutritional quality traits such as oil, protein and stearic acid across the locations. The protein content varied from 29.1% to 35.6%, oil content varied from 10.6% to 20.7% whereas oleic acid and ash varied between 6.8% and 30.8%, and 4.3% and 8.2%, respectively. There was vast genetic diversity among the soybean genotypes. The presence of genetic diversity will aid breeders in selections and hybridization programmes for crop improvement.

Keywords: Agro-morphology, Genetic diversity, Nutritional quality, Soybean.

1. Introduction

Soybean [Glycine max (L.) Merrill] (2n=2x=40) is one of the most important legumes produced worldwide. According to Food and Agriculture Organisation of the United Nations [1] the three major world-producing countries are U.S.A (90.6 million metric tonnes), Brazil (68.5 million metric tonnes) and Argentina (52.6 million metric tonnes). The total production in Africa was 1.5 million tonnes with West Africa producing 437,115 metric tonnes. Nigeria is the leading producer in West Africa with 393,860 metric tonnes [2]. In South Africa soybean is produced in almost all provinces with the Free State being the major producer. In 2014, South Africa produced 8851 metric tons in an area of 502900 hectares. Soybean is grown primarily for the production of seed and has several uses in the food and industrial sectors. It is the most important crop provider of proteins and oil used in animal nutrition and for human consumption. It contains 40 to 42% good quality protein and 18 to 22% oil comprising 85% unsaturated fatty acids and is free from cholesterol, it is highly desirable in the human diet [3]. Besides fixing the atmospheric nitrogen, this crop has the ability to grow in a wide range of environments, to reduce soil erosion, to suppress weeds and to suit inter and sequential cropping patterns.
It is valued finding to understand genetic diversity and relationship for facilitating the transfer of useful genes among cultivated species and maximizing the use of available germplasm resources. The extent of genetic diversity in germplasm can be assessed through morphological characterization. The characterized material then helps the plant breeders to select the accessions to be utilized in hybridization programme [4]. An investigation of genetic relatedness at a broad level may provide important information about the historical relationship among different genotypes. It reveals genetic backgrounds and relationships of germplasm and also provides strategies to establish unitize and manage crop core collections [5]. Therefore the knowledge of the genetic variation within accessions from germplasm collections is essential to the choice of strategies to incorporate useful diversity into the program to facilitate the introgression of genes of interest into commercial cultivars, to understand the evolutionary relations among accessions, to better sample germplasm diversity and to increase conservation efficiency [6].

Morphological characters, both quantitative and qualitative have long been used to identify species, genera, to evaluate systematic relationships, and to discriminate between varieties [7]. In breeding practice and seed production, the role of morphological descriptor is very important, since the distinguishing between varieties can be done quickly and precisely.

Qualitative traits are usually controlled by a few genes, thus easily observable and suitable for cultivar differentiation and identification. On the other hand, quantitative traits have more limitations in cultivar description, since they are affected by environmental effects, developmental stage of the plant and the generation of selfing of breeding material. According to Khalid, et al. [8] scientific classification of the plant still relies on morphological traits. They are easier to work with, cost effective and easy to score and requires less time and finally they do not need any technical knowledge. Kumar, et al. [9] evaluated genetic diversity and interrelationship of agro-morphological traits in soybean genotypes. Vesna, et al. [10] determined genetic relatedness of soybean genotypes based on agro-morphological traits and DNA markers and they found genetic differences among the genotypes. Malek, et al. [11] also assessed genetic variability and association of characters among the soybean mutants and reported a vast genetic variability. Khatab, et al. [12] reported the presence of genetic diversity among soybean genotypes assessed through agro-morphological descriptors.

Soybean has nutritional quality attributes such as protein and oil that makes it an important food crop. It has 40–42% high quality protein and 18–22% oil comprising up of 85% unsaturated fatty acid as well as 12% carbohydrates [13]. Soybean not only contains high quality protein, but the protein content is also much higher than that of other plant foods. Soy protein is valued as a healthy protein due to containing a balanced proportion of all of the important and essential amino acids required by the human body [14]. It can provide two fold more proteins as compared to any other vegetable crop or grain [15]. Soy oil can serve as a good source of oleic and linoleic acid, even the partially hydrogenated soy oil contains 25% linoleic and 3% linolenic acid [16]. Soybean oil is also a good source of vitamin E [17]. Some recent studies revealed variations among the soybean accessions based on quality traits such as oil [18]. However, the nutritional quality traits vary depending on the varieties grown. There are limited studies on the analysis of genetic diversity among the soybean accessions based on nutritional quality traits in South Africa. There is still need to understand and record variations due to other nutritional quality traits that soybean cultivars possess. This will aid breeders to improve the quality of soybean cultivars and for selection of best accessions for both quality agronomic attributes. The objective of the study was to assess genetic diversity using agro-morphological and nutritional quality traits among soybean genotypes grown in South Africa.

2. Materials and Methods

2.1. Plant Material. Experimental Layout and Management

Ninety-eight soybean genotypes maintained at the Agricultural Research Council-Grain Crops Institute were planted in Potchefstroom (26.7145° S. 27.0970° E) and Brits (25.6100° S. 27.7960° E) in alpha lattice design replicated two times. Each plot consisted of two 4 m length rows with a spacing of 75 cm between the rows and 10 cm between the plants. Fertilizer 2:3:4 was applied before planting. The plants were irrigated using sprinkler irrigation system.  The pre-emergent weeds were controlled by herbicide Bateleur Gold and post emergent weeds were controlled by both Basagran EC and manually. Lime Ammonium Nitrate was top dressed 45 days after germination i.e. before the plants flower. The cultural practices were applied as per soybean planting recommendations.

2.2. Data Collection and Analysis

The agro-morphological data recorded is indicated in Table 2. At harvest, five plants were randomly taken from each plot to measure days to 50% flowering; number of branches per plant; hundred seed weight (g); pod weight (g); seed number per pod; seed number per plant; pod number per plant; and seed yield (g). Analysis of variance was performed for all traits in order to test the significance of variation among the genotypes. The data were further subjected to principal component analysis and correlations. The dendrogram was constructed to study the genetic relatedness among the tested accessions using hierarchical clustering in GenStat 18th version.

Table-1. List of names of the soybean accessions used in the study.

Serial Number
GM number
Accession Name
Serial Number
GM number
Accession Name
1
220
69 S 10
50
673
6/15/1935
2
223
69 S 13 Seleksie
51
675
6/6/1971
3
231
69 S 19
52
678
105/5
4
266
Nim
53
679
1/5/2012
5
267
Yubelejuaja
54
681
6/12/2015
6
268
Hawkeye (USSR)
55
688
85/05/
7
278
Shelby
56
691
6/17/1964
8
284
Gx Gous
57
699
Essex
9
290
Chippewa 63
58
707
DB 1601
10
291
R 5-4-2 M
59
715
Crawford
11
292
R 2-11-3M
60
724
D64-4636
12
297
B 66 S 365
61
725
D66-8666
13
304
B 66S 385
62
861
ORIBI
14
544
Columbia M 8 A
63
862
Impala
15
568
Grant
64
864
SSS 3
16
571
Hampton 266 A
65
873
ND 85
17
575
Hawkeye
66
1120
AGS 239
18
578
Hernon
67
1363
IPB 212-81
19
582
Jackson
68
1371
Coc Chum
20
592
Mack 6
69
1380
F 82-7824
21
593
Mandarin
70
1386
MTD 63
22
595
Maksura
71
1390
Jupiter
23
597
Mojiana
72
1403
F 82-7145
24
598
N69-2774
73
1409
F 82-7656
25
604
PI 170889/(R56-49)
74
1449
UFV-1
26
607
Pikett
75
1552
PR 118 (278)
27
617
S4-A.P.4
76
1554
PR 133 (484)
28
621
Santa Rosa
77
1555
PR 144-4
29
623
Soja (pautena)
78
1556
PR 144-9
30
624
Solar 12
79
1558
PR 145-2
31
626
SSS 2
80
1572
PR 154-13
32
630
Vaschadaka
81
1573
PR 154-14
33
631
Vicoja
82
1575
PR 154-22
34
637
Yeluanda
83
1578
PR 154-47
35
646
54 S 116
84
1590
PR  161-40
36
648
54 S 219
85
1594
PR 162-18
37
649
54 S 95
86
1595
PR 164-20
38
650
14/6/32
87
1596
PR 164-22
39
651
6/11/2017
88
1597
PR 165-3
40
652
6/18/2020
89
1598
PR 165-31
41
653
21/6/23/2
90
1599
PR 165-50
42
654
28/6/35
91
1600
PR 165-52
43
655
28/6/54
92
1659
TN 81-46
44
659
89/05/
93
IBIS
IBIS
45
660
104/5
94
EGRET
EGRET
46
662
165/5
95
HERON
HERON
47
664
Rhosa ligte hilum
96
NGUTHU
NGUTHU
48
666
6/26/2017
97
DUNDEE
DUNDEE
49
668
6/25/2020
98
JIMMY
JIMMY

Agricultural Research Council-Grain Crops in South Africa

Table-2. List of abbreviations

Full name
Abbreviation
Hundred seed weight (g)
HSW
Number of branches per plant
BNP
Days to 50% flowering
DFW
Pod number per plant
PNP
Pod length (mm)
PDL
Pod weight/plant (g)
PDW
Seed number per pod
SNP
Seed number per plant
SDP
Seed yield (g)
SDY

3. Results

3.1. Agro-Morphological Diversity

3.1.1. Analysis of Variance of Nine Agro-Morphological Traits

There were significant differences (P ≤ 0.05) observed among the accessions grown in Potchefstroom based on seed number per plant and seed yield; and highly significant differences based on days to 50% flowering, pod weight per plant, and seed number per pod (P ≤ 0.001) (Table 3). Seed number per plant ranged between 46 and 47, and seed yield ranged between 5.58 and 156.3 g. Days to 50% flowering ranged between 55 and 121,5. Pod weight per plant ranged from 13.33 to 4.21 g. Seed number per pod ranged between 1 and 7 pods. In Brits, significant differences (P ≤ 0.05) were observed among the accessions based on number of branches per plant and pod number per plant (Table 4). Number of branches ranged between 3.8 and 8.3, and pod number per plant also ranged between 31.7 and 47.0. The genotypic effects were highly significantly different across the two locations based on number of branches per plant and seed number per plant; and there were significant differences on pod length, seed number per pod, and seed yield (Table 5). Hundred seed weight, days to flowering, pod number per plant and pod weight per plant were non-significant.

Number of branches per plant ranged between 3.6 and 8.0. Seed number per plant ranged between 71.9 and 418.2, whereas pod length, seed number per pod, and seed yield ranged from 27.8 to 44.3 mm, 1 to 3, and 11.6 to 96.8 g, respectively.

The two sites showed highly significant differences (P ≤ 0.001) in quantitative traits such as number of branches per plant, pod weight per plant, seed number per pod, seed number per plant, and seed yield and significant differences on days to 50% flowering. On the other hand,    highly significant differences were observed on the genotype x site interaction for days to 50% flowering, seed number per plant and seed yield. The significant differences on genotype x site interaction could be attributed to the different reactions of the accessions to sites or due to differences between the sites. 

3.1.2. Principal Component Analysis

The agronomic data were subjected to principal component analysis (PCA), which revealed that the three most important PCs contributed 63.2%, 25.4% and 8.9% of the total variation, respectively (Table 6). Seed number per plant, pod number per plant, and pod weight were the traits that contributed the most variation in the first PC. Seed number per plant and pod number per plant were the traits that contributed the most variation in the second PC, whereas pod number per plant, and seed number per plant were the largest contributors to the variation observed in the third PC. The principal component biplot (Figure 1) grouped the tested soybean accessions into two major groups. The accessions exhibiting early flowering, high seed number per plant, high pod weight and high seed yield were grouped together.

3.1.3. Correlation Analysis among Phenotypic Traits

The phenotypic traits were analysed using pair-wise rank correlations coefficients. The results and association of the traits are reported based on the significance levels of 5% (p < 0.05) and 1% (p < 0.001). Seed yield was highly significant and highly correlated with seed number per plant, pod weight per plant, pod number per plant, and hundred seed weight but negatively correlated with seed number per pod. However, was also positively and significantly associated with pod length and days to 50% flowering. Seed number per plant was highly significant and positively correlated with pod weight per plant, pod number per plant, days to 50% flowering but negatively correlated with seed number per pod. It was also significant and positively correlated with pod length. Seed number per pod was highly significant and negatively associated with pod weight per plant, days to 50% flowering, but positively correlated with number of branches. Pod weight per plant was highly and positively associated with pod length, pod number per plant, days to 50% flowering. Pod length was significant and positively correlated with pod number per plant, and number of branches. Pod number per plant was highly and significantly associated with branch number and days to 50% flowering, respectively.

3.1.4. Cluster Analysis

The agro-morphological traits were analysed using agglomerative hierarchical clustering to construct a dendrogram (Figure 2). Three major clusters were formed among the soybean accessions. Cluster I was composed of two accessions, S4-A.P.4 (54) and Columbia M 8 A (41) which were genetically closely related. Cluster II consists of two accessions, 04-Apr-2000 (16) and 03-Apr-2000 (15) which were closely related. The third cluster was composed of 94 accessions, which were sub-clustered into three groups. The accessions within each sub cluster were closely related whereas the accessions between the clusters were unrelated. The accessions that were mainly distantly related from the other accessions were 2015/06/12 (54), 69 S 10 (1), PR 154-14 (81), R 5-4-2 M (10), Hawkeye (USSR) (6), and PR 145-2 (79).

Table-3. Means of agro-morphological traits of 96 soybean accessions planted in Potchefstroom.

GM
HSW
BNP
DFW
PNP
PDL
PDW
SDP
SNP
SDY
1120
16.57
14
70.5
114.8
40.01
102
260.1
7
49.58
1363
12.07
19
109.5
164
35.01
89.5
231.5
6.5
33.08
1371
13.23
13
77.51
100.3
38.33
75
223.1
6.5
28.19
1380
12.57
16.5
97
239.7
37.51
67
435.6
7
61.25
1386
13.57
10.5
55
108.2
39.51
92
300.5
7
41.08
1390
14.45
20.5
81.5
145.5
35.23
86
232
5.5
32.29
1403
15.95
13
76
188
39.23
137
399.5
7
64.79
1409
12.57
9.5
98
107.8
26.67
65.5
138.8
4.5
17.91
1449
16.57
9.5
94.5
117.2
31.67
63
178.3
4
21.58
1552
9
20.5
105.51
131.7
0
28.5
176.3
4
20
1554
19.57
13.5
74
134.2
40.84
43
309.3
7
59.41
1555
17.45
15
84
174.4
34.23
48.5
310.6
5.5
54.46
1556
18.23
17
83.01
140.1
43
122.5
243.6
7
45.52
1558
16.41
17
99.5
158.1
34.99
26
230.8
5.5
35.67
1572
13
23
116
47.9
39.99
39.5
68.5
7
7.17
1573
11
14
121.45
89.7
40
28
102.3
4
12.33
1575
12
18
97.04
74.3
34
23
91.3
4
10.67
1578
16.48
10
76.04
113.1
26.2
69
194.7
4.5
29.74
1590
10
16.5
96.54
38.6
37.87
71
46.4
7
5.58
1594
10
14.5
90.58
141.3
41.67
41.5
223.3
4
22.67
1595
14.33
10.5
103
157.6
39.41
69.5
181.5
6
24.4
1596
13.83
17.5
101
220.6
39.75
113
334.8
5.5
45.56
1597
12.98
23
104.54
174.7
40.37
66
331.1
7
51.08
1598
17.48
17
76.04
97.7
43.7
71.5
191.7
7
30.74
1599
14.26
11
77.45
172.1
44.08
101
274.8
7
43.09
1600
15.83
9.5
74
119.6
45.08
105
277
7
44.4
1659
13.66
19
107.58
176.4
39.23
124
360.1
7
52.56
220
16
15
73.48
136.4
26.99
55
294.4
3.5
48.61
223
22.03
13.5
69.48
154.4
39.99
60
323.2
7
67.61
231
23.45
13.5
67.97
110.8
42.54
61.5
202.8
7
54.54
266
17
17
68.97
165.7
40.33
4.5
374.7
4
74
267
20.03
13.5
79.98
189.3
39.82
122.5
210.7
7
54.77
268
18.03
16
74.48
241.6
39.32
35
570.4
7
126.44
278
19.9
18.5
63.49
159
40.83
49
343.5
7
59.54
284
18.53
21.5
75.48
207.1
39.99
17
436.4
7
81.77
290
18.45
15
74.47
169.2
42.54
71.5
375.7
7
72.87
291
20.4
17
70.49
141.7
41.67
34.5
309.7
7
63.04
292
19.45
14
77.47
180.5
38.38
57
318.3
6.5
71.04
297
21.45
12.5
72.97
131.5
39.38
111
272
7
55.2
304
18.95
21
78.47
221.7
41.71
85.5
434.3
7
83.04
544
15.95
19.5
77.47
216
43.38
35
517.2
7
79.04
568
23.53
19.5
70.98
141.4
40.65
130.5
258.5
7
61.11
571
24.95
11.5
66.47
79.2
36.71
82.5
153.5
7
37.87
575
17.9
18.5
107.99
81.3
40
64.5
135
7
20.04
578
14.95
8.5
89.47
90
45.04
103
135
7
20.2
582
18.53
21
107.48
125.3
43.32
89
191
7
29.27
592
13.53
14
61.98
179.1
41.65
135
457
7
65.77
593
18.29
19.5
75.97
82.9
36.64
94.5
150.8
6
24.28
595
20.59
13
76.96
130.6
31.7
109
239
5.5
48.94
597
23.09
16.5
75.96
166.6
39.2
21.5
328.7
7
75.78
598
19.79
17.5
73.97
113.7
40.81
94
216.3
6.5
43.78
604
20.05
13.5
72.98
141.6
39.17
51.5
330.8
7
60.94
607
78.55
13
94.48
107.1
37
48.5
158.5
6
84.27
617
22.05
23.5
74.48
309.6
40
40
688
7
156.27
621
17.55
14.5
70.98
92.2
36.67
99.5
217.3
7
35.77
623
59.09
17.5
76.46
134.4
31.03
79
205
4
60.28
624
15
23.5
83.47
157
36.67
52.5
248
2.5
37.33
626
17.09
15
91.96
127.4
43.36
87
201.3
6.5
35.11
630
22
9
85.48
201.7
31.67
3.5
310.7
2.5
65.67
631
16.59
14
90.46
90.7
45.86
69
170.3
7
26.94
637
16.55
12.5
72.98
179.2
40.83
136
373
7
60.77
646
18.59
12
71.96
106.1
30.03
78.5
185.3
4
33.44
648
18.05
11
73.98
114.1
36.67
91.5
226.5
5
59.61
649
16.59
10
71.46
104.4
41.86
84
190.2
6.5
34.61
650
16.79
15
78.47
234.1
36.64
71
432
5.5
72.78
651
20.42
13
76.98
123.5
49.21
44.5
246.3
7
54.58
652
14.92
9
78.98
89.2
27.55
69
202
4.5
30.08
653
19.23
14.5
73.98
143.7
36.56
57.5
241.2
7
50.08
654
14.04
14
68.49
117.5
37.51
87.5
251.5
6.5
39.05
655
15.04
15
71.99
255.2
41.34
73
608.5
6.5
101.21
659
17
12.5
79.98
72.7
13.33
30
148.7
1.5
25.33
660
18.98
18.5
77.47
126.4
39.09
121.5
247.1
7
51.4
662
61.23
13.5
74.48
144.4
37.4
54
311.7
6
73.25
664
17.04
20.5
72.99
165.2
36.67
129.5
291.3
6.5
60.38
666
17.54
15.5
65.49
134.4
40.01
139.5
341.1
7
64.71
668
20.54
15.5
72.99
158.9
40.01
82.5
350
7
73.38
673
20.06
11
67.98
90
37.37
94
191.8
5.5
40.33
675
19.56
14.5
76.48
160.3
37.54
53
313.9
7
55.83
678
0
15
75.49
0
0
1
0
1
0
679
18.04
18
77.99
137.2
41.67
43.5
302.5
7
53.88
681
22.23
15.5
77.48
137.9
27.4
65.5
333.6
4.5
72.08
688
21.23
16
71.98
114.2
39.06
66.5
240.6
7
49.42
691
15.56
16
75.98
192.8
42.37
28.5
391.3
7
89.16
699
6.98
21.5
104.97
87.4
25.75
39
136.6
4
8.3
707
18.93
16
90.99
225.8
39.11
19.5
464
6.5
90.14
715
18.54
18
70.99
141.5
41.67
52.5
291
7
59.38
724
15.23
14
83.48
124.2
42.4
93
265.2
7
37.75
725
16.23
14.5
76.51
139.6
40
37.5
283.9
7
47.85
861
20.23
13.5
74.01
600.9
42.67
34
236.1
7
66.85
862
16.95
16.5
72.5
119.4
41.73
97.5
255.8
6.5
43.29
864
12.07
15
75.5
179.8
41.51
62
363.3
7
55.25
873
16.57
14
70.5
179.3
36.67
101.5
351.1
7
54.25
DUNDEE
17.98
18.33
65.01
149.4
39.87
33.33
344.7
5
62.58
DUNDEE*
20.95
16
66.02
152.5
43.84
128
314.9
7
57.89
EGRET
12.94
13.72
67.01
111.2
39.89
75.12
247.5
6.328
35.31
EGRET*
19.95
15
68.02
127.7
43.17
102
233.9
6.5
45.56
HERON
15.33
11.5
66
130.6
36.75
88.5
282.1
6.5
40.06
IBIS
16.83
17.5
66.5
153.1
40.58
122.5
328.1
7
56.9
F-prob
0.49
0.193
<.001
0.487
0.09
0.012
0.002
<.001
0.003
LSD
25.78
4.87
11.239
191.6
11.82
77.84
230.5
2.87
48.96
CV
66.61
31.83
7.19
63.77
15.25
55.11
40.7
23.69
47.05
SE
12.57
4.843
5.745
94.7
5.876
38.97
113.9
1.437
24.2

Table-4. Means of agro-morphological traits of 98 soybean accessions planted in Brits.

Genotype
HSW
BNP
DFW
PDL
PNP
PDW
SDP
SDY
1120
24.02
4.135
58.49
39.51
80.2
62
114.8
31.3
1363
16
5.302
56.99
37
138.3
55.33
213.3
31.67
1371
16.61
6.838
68.98
38.32
156.5
61.57
210.3
34.66
1380
15.02
6.968
57.99
37.18
84
27.66
113.8
15.3
1386
21.02
3.635
66.99
37.51
82.8
49.33
118.8
31.97
1390
14.55
6.654
46.98
34.3
82.4
29.02
114.6
16.42
1403
19
5.654
57.48
42.13
111.6
47.52
142.1
31.25
1409
16
6.135
58.49
40
55.3
21.67
82.7
12.67
1449
17.52
7.635
67.99
34.18
114
39.5
152.3
22.8
1552
12.61
7.338
60.48
35.15
148
50.57
239
32.16
1554
17.52
5.333
60.99
47.01
94
57.5
172.8
37.3
1555
18
6.154
49.48
36.97
82.4
31.68
108.7
19.42
1556
18.11
8.338
69.98
41.65
161
67.24
219.8
39.83
1558
17.14
8.165
61.08
38.32
187.4
65.57
267.2
47.55
1572
11.64
6.832
76.08
41.82
81.8
34.4
147.7
31.39
1573
0
6.373
56.28
0
0
0
0
0
1575
15
4.844
62.26
41.67
128
51.67
192.7
31.67
1578
16
7.344
70.26
31.67
111.7
42
156
25.33
1590
16
6.51
60.26
37.33
91.3
43.33
124.3
21.67
1594
14
5.038
55.76
35
158.7
60
253.3
34.33
1595
14.1
7.647
64.91
39.28
158.9
51.92
223.3
31.88
1596
17.1
7.647
73.41
37.11
162.9
70.92
249
42.55
1597
13.61
6.177
47.26
35.09
131.3
55.69
209.1
34.1
1598
20.11
6.677
47.76
36.92
147.1
72.03
200.8
44.6
1599
19.65
5.206
49.78
39.2
125.8
64.72
211.3
41.26
1600
22.1
4.647
68.91
39.11
97.6
52.09
128
33.88
1659
14.29
6.705
44.76
39.25
102.3
44.05
174.7
26.1
220
21.43
5.012
46.49
39.33
107.2
51.35
171.2
33.5
223
22.43
3.845
63.99
41
119.2
65.52
180.5
39.5
231
25
3.848
47.5
40.11
38.8
23.4
53
12.89
266
25
5.181
55.5
43.28
64.4
32.74
76.9
19.89
267
26
7.012
67.49
36.67
67.2
48.68
101.4
23.5
268
21.93
6.512
44.99
38.67
105.5
60.18
168.5
36.67
278
21.87
5.348
59.5
41.55
86.6
44.88
124.9
28.42
284
25
5.345
60.99
36.67
46.5
27.52
68.7
16.5
290
19
7.348
51.5
41.45
75.1
42.07
119.9
70.89
291
17.37
5.181
53
39.3
85
36.88
116.9
23.5
292
22
7.015
59
41.33
55.3
33
90.3
20.33
297
25
6.681
63.5
40.78
59.6
40.24
91.5
26.39
304
13.41
5.515
57.5
42.95
65.6
28.74
104.2
16.89
544
13.91
8.015
47
41.61
163.4
71.74
240.4
42.39
568
0
4.512
48.99
38
49.7
22.02
58.7
11.5
571
19.91
5.515
68
39.61
135.3
71.9
205.5
47.39
575
20.37
5.514
63.5
41.97
129.2
74.72
197.7
36.17
578
15.41
6.681
56.5
39.95
198.8
85.4
272.2
47.39
582
11.43
7.345
65.49
39.17
172
79.85
233.4
42.84
592
17.43
4.345
69.99
40.5
56
26.02
86.9
15
593
20
5.163
50.01
40.67
77.3
34.67
98.7
19.33
595
23.01
6.666
60.5
42.42
102.1
48.93
140.7
31.83
597
20.51
6.166
56.5
38.42
117.8
65.76
186.3
36.83
598
24.1
6.496
55.01
41.34
113.1
60.1
161.8
38.12
604
23.55
6.499
53.99
40.81
111.1
62.33
185.8
41.89
607
21
5.332
54.99
32
106.7
47.33
146.3
30
617
23.55
6.832
53.49
37.47
247.6
50.5
141.8
35.23
621
20.55
5.832
50.49
41.14
101.2
60
180.8
39.56
623
20
6.333
59.5
35.08
72
32.43
89.3
18.33
624
17.6
6.996
55.51
37.51
137.3
55.6
177.8
31.12
626
18
7.666
57.5
31.67
69
26
75
13.33
630
22
6.999
53.49
34.97
91.7
44.17
131.8
29.56
631
24.01
4.999
48
39.58
102.8
47.76
135
29.66
637
16.55
5.832
53.49
37.47
116.9
51.5
208.5
33.23
646
20.51
5.166
58
36.58
70.5
31.1
104.3
20.66
648
20.05
4.665
46.49
37.81
79.7
32.17
99
19.56
649
19.01
4.833
53
41.08
64
29.76
107.5
20.66
650
17.1
6.996
56.01
38.17
105.9
53.1
178.9
32.45
651
19
5.324
60.49
39.32
71.9
35.05
114
19.48
652
16
4.491
45.49
36.32
40.4
17.05
56.5
10.15
653
17
4.143
46
37.49
74.9
31.48
106.3
18.41
654
17
5.661
45.99
36.67
187.7
83.67
329
56
655
15.88
6.495
47.49
33.82
76.2
30.49
118.5
18.25
659
24.77
7.84
61.05
40.84
109.3
57.87
159.6
54.55
660
23
7.18
48.49
40
70.3
31.67
94.3
21
662
22.01
4.643
46.5
33.82
74.5
39.64
118.9
26.24
664
20.38
5.328
60.49
31.65
104.3
49.66
166.2
34.75
666
21.38
5.828
43.99
38.82
82.2
38.82
120.7
23.75
668
21.38
5.328
64.99
38.82
93.8
53.49
140
28.75
673
23
4
56.05
40
56.2
31.21
88.8
19.38
675
17
6.006
47.55
39.67
83.2
45.71
94.8
17.22
678
23
5.661
66.49
37.48
53.7
27.32
78.5
15.58
679
121.88
4.328
53.99
40.15
87.2
56.82
157.3
36.42
681
26
5.309
56
40
100.3
53
141
35.33
688
23
6.809
45
45
116.3
51
148.3
43.67
691
19.27
6.34
57.55
40
161.5
73.54
200.1
44.38
699
8.66
7.68
46.99
37.26
133.5
28.26
200.4
17
707
9.75
5.512
61.49
39.98
68.8
33.71
108.1
22.44
715
22.88
4.495
50.99
39.15
90.2
61.82
153.8
37.58
724
16.51
7.309
57.5
43.49
163.2
74.98
246.9
45.41
725
19
7.838
64.98
44
134.3
60.67
222.3
37
861
24
6.338
55.98
38.32
79.7
44.07
126.2
27.99
862
20.55
5.32
45.98
33.63
107.9
53.18
165.6
34.58
864
23.02
4.302
47.99
39.85
86.7
57.16
163
38.64
873
17.02
4.635
48.49
37.85
148.3
66.83
211.6
43.97
DUNDEE
21.65
5.552
47.5
39.62
111.5
57.7
172.9
38.74
DUNDEE*
18.87
5.029
45.38
37.9
95
49.06
122.1
26.39
EGRET
19.91
3.865
62.12
40.03
85
45.06
149.5
30.06
EGRET*
23.37
5.695
44
44.9
142.6
76.56
195.3
45.72
HERON
20.1
3.981
43
38.28
91.3
46.59
167.1
29.72
IBIS
21.6
4.647
60.41
40.61
130.3
69.09
218.1
43.22
F-prob
0.863
0.006
0.163
0.064
0.367
0.382
0.214
0.599
LSD
39.65
2.401
19.59
6.221
104.52
43.14
134.8
32.6
CV
86.77
20.6
17.32
7.67
47.97
42.02
42.07
50.54
SE
17.72
1.216
9.7
2.985
50.15
20.7
64.67
15.64

Table-5. Means and mean squares of combined analysis of variance of agro-morphological traits of 96 soybean accessions planted across two sites. Potchefstroom and Brits. 2016/17

Genotype
HSW
BNP
DFW
PNP
PDL
PDW
SNP
SDP
SDY
1120
19.94
4.415
64.5
98.6
39.75
65.97
3,00
189.8
40.8
1363
13.22
5.833
83.31
156
35.67
58.4
2,83
226
32.67
1371
14.84
5.574
73.25
130.9
38.34
56.24
2,83
218.9
31.7
1380
13.6
6.243
77.54
163.9
37.34
66.61
3,00
278.5
38.86
1386
16.94
3.58
60.97
96.5
38.51
55.67
3,00
212.3
36.81
1390
14.67
6.747
64.28
114.9
34.76
42.21
2,50
174.8
24.51
1403
16.9
4.994
66.76
150.9
40.65
70.96
3,00
273.4
48.32
1409
13.48
4.823
78.29
91.5
31
35.75
2,00
121.3
16.25
1449
16.9
7.58
81.27
116.4
32.91
40.08
2,00
166.7
22.39
1552
11.15
7.079
83.05
142.7
35.17
44.84
3,00
218.1
28.07
1554
18.5
4.777
67.51
115.2
43.89
73.07
3,00
243.3
48.75
1555
17.6
5.577
66.78
129.6
35.57
59.28
2,50
211.9
37.25
1556
18.2
6.99
76.51
153.3
42.34
75.54
3,00
234
43.05
1558
16.67
6.907
80.29
173.4
36.65
66.01
2,50
250
41.53
1572
12.02
7.249
96.04
65.5
40.91
26.79
3,00
108.7
19.09
1573
11
8.005
89.07
89.7
40
32.67
3,00
102.3
12.33
1575
13.4
5.417
79.78
100.7
37.79
36.76
3,00
141.2
21
1578
16.3
5.32
73.25
111.7
27.77
43.39
2,00
181.6
28.28
1590
12.95
5.994
78.53
55.1
37.45
22.53
3,00
71.9
11.59
1594
11.87
4.913
73.28
149.9
38.37
57.29
3,00
238.1
28.4
1595
13.94
7.747
84.04
155.8
39.34
47.18
2,67
199.1
28.03
1596
15.07
6.742
87.27
189.7
38.43
73.13
2,50
289.7
44.03
1597
13.87
6.917
76.06
151.5
37.69
75.84
3,00
268.8
42.7
1598
19.3
6.161
62.02
120.2
40.29
59.31
3,00
193.9
37.53
1599
16.77
4.41
63.77
149.5
41.53
66.02
3,00
244.7
42.24
1600
18.47
3.91
71.49
106.3
42.12
61.24
3,00
200.8
39.17
1659
13.94
6.496
76.32
142.4
39.17
63.49
3,00
266.8
39.57
220
19.4
4.997
60.02
121.8
33.1
60.05
1,67
233.1
41.12
223
22.17
4.165
66.75
136.8
40.5
85.4
3,00
252.3
53.73
231
23.9
4.165
57.76
75.9
41.35
59.31
3,00
130
33.99
266
20.73
5.415
62.26
100.7
42.31
59.74
3,00
182.4
38.33
267
21.85
5.741
73.75
129
38.27
66.36
3,00
156.2
39.34
268
19.8
5.911
59.78
174.4
39.01
115.21
3,00
372
82.23
278
20.87
5.749
61.49
123.9
41.21
66.75
3,00
234.9
44.19
284
20.5
6.252
68.26
127.9
38.35
76.62
3,00
254.8
49.62
290
18.62
6.158
63.02
123.4
42.01
74.92
3,00
250.7
71.84
291
19.04
5.415
61.76
114.4
40.51
56.3
3,00
213.8
43.55
292
20.19
5.824
68.26
139.6
39.31
77.06
2,83
243.5
53.99
297
22.56
5.407
68.25
96.6
40.08
57.85
3,00
184.1
40.97
304
16.37
6.251
68.02
145.4
42.33
79.46
3,00
272.8
50.44
544
15
7.243
62.28
190.6
42.51
117.8
3,00
381.9
60.95
568
23.44
5.502
60.02
96
39.35
55.54
3,00
159.5
36.66
571
22.6
4.659
67.24
107.2
38.15
64.27
3,00
179.9
42.49
575
19.1
5.832
85.79
105.4
40.99
57.97
3,00
164.8
27.93
578
15.17
6.915
73.03
144
42.53
78.11
3,00
203.3
33.51
582
15.17
7.163
86.54
148
41.27
68.4
3,00
211.1
35.89
592
15.3
4.498
65.98
118.3
41.09
59.62
3,00
274.2
40.75
593
18.93
5.834
63.02
80.6
38
53.01
2,67
132.9
22.57
595
21.87
5.491
68.76
116.2
37.03
61.27
2,50
190.9
40.54
597
22.04
5.829
66.26
142.2
38.84
102.84
3,00
258.9
56.64
598
21.8
6.162
64.51
113.2
41.08
62.2
2,83
189.3
40.99
604
21.84
5.492
63.51
126.7
39.99
76.98
3,00
258.4
51.59
607
61.92
4.828
74.79
107.2
35.38
79.17
2,67
152.7
66.72
617
22.9
7.333
64.02
279.2
38.77
122.06
3,00
418.2
96.75
621
19.1
5.328
60.76
96.8
38.89
63.3
3,00
198.3
37.65
623
47.03
6.079
68.01
103.3
33.06
42.91
2,00
148.3
39.66
624
16.58
7.416
69.52
144.1
37.22
60.09
2,00
201.8
33.24
626
17.6
6.323
74.78
107.8
39.54
48.11
2,83
159.9
27.9
630
22
5.154
69.53
129.7
33.86
65.11
2,00
194
42.17
631
20.2
4.829
69.29
96.3
42.79
46.05
3,00
153.2
28.3
637
16.7
4.993
63.26
148.7
39.19
72.58
3,00
291
47.24
646
19.64
4.577
65.01
88.2
33.3
42
2,00
145.7
27.18
648
19.14
4.161
60.27
97.3
37.25
47.49
2,33
162.7
39.93
649
17.87
4.076
62.26
84.1
41.51
42.36
2,83
149.7
27.77
650
16.94
5.992
67.27
170.8
37.41
85.35
2,50
307.4
52.94
651
19.99
4.828
68.76
97.5
44.31
59.39
3,00
180.4
37.32
652
15.27
3.911
62.28
64.5
31.87
31.57
2,00
129.6
20.28
653
18.37
4.499
60.02
109.4
37.08
60.46
3,00
175
34.52
654
14.9
5.161
57.27
141
37.22
67.44
2,83
277.7
44.84
655
15.64
5.743
59.77
167.2
37.63
68.78
2,83
367.8
60.45
659
21.96
6.155
70.51
96.6
31.43
51.49
1,00
156.1
44.22
660
20.13
6.661
63.03
110
39.44
66.11
3,00
200.8
41.93
662
42.74
4.58
60.52
109.6
35.69
62.87
2,67
217
50.14
664
18.8
6.084
66.75
135.3
34.2
69.15
2,83
230.1
47.81
666
19.54
5.495
54.77
108.7
39.43
67.71
3,00
233
44.6
668
21.14
5.246
69
126.9
39.43
91.36
3,00
247
51.47
673
20.84
3.776
62
74.2
38.74
47.68
2,50
142.4
30.04
675
18.67
5.411
62.03
123.2
38.66
67.26
3,00
207.5
36.85
678
23
5.329
71
53.4
37.5
27.25
-
78.3
15.52
679
66.7
5.168
66.02
112.6
40.93
70.81
3,00
231.4
45.33
681
23.13
5.246
66.77
125.1
31.56
88.01
2,00
271.3
60.11
688
21.54
6.076
58.52
114.2
41.06
86.23
3,00
210.5
47.5
691
17.3
5.828
66.76
178.2
41.27
116.26
3,00
298.6
67.15
699
7.64
7.412
76.06
111.9
31.52
25.02
2,00
171.3
12.86
707
14.74
5.413
76.28
151
39.58
83.71
2,83
290.2
57.03
715
20.77
5.251
61.01
116.3
40.43
74.54
3,00
223.9
48.7
724
15.64
5.99
70.52
143
43
68.9
3,00
256.4
41.53
725
17.19
6.323
70.75
141.5
41.3
72.6
3,00
266.2
44.69
861
21.56
5.409
65.01
347.5
39.78
60.76
3,00
184.2
48.07
862
18.8
5.414
59.27
114.2
37.71
59.01
2,83
212
39.03
864
17.07
4.665
61.77
134.8
40.68
76.72
3,00
266
47.29
873
16.67
4.664
59.52
164.9
37.25
68.18
3,00
283.7
49.4
DUNDEE
19.22
5.899
59.48
128.9
39.62
73.86
3,00
256.2
48.3
DUNDEE*
19.77
5.164
55.76
124.6
40.95
68.89
3,00
221.3
42.41
EGRET
16.44
4.232
64.66
95.6
40.01
48.16
2,88
197.1
32.73
EGRET*
21.34
5.329
60.06
135.4
44.08
73.43
2,83
216.1
45.65
HERON
17.27
3.913
58.31
108.8
37.49
52.94
2,83
222.7
34.92
IBIS
18.77
5.25
63.5
139.4
40.58
75.87
3,00
271.1
50.12
HSW
BNP
DFW
PNP
PDL
PDW
1,00
SDP
SDY
Genotype
236.7
3.851***
278.09
5837
36.31**
1290.5
3,00
13538***
686.9**
 
Site
334.6
32.707***
56339.34***
182894***
9.27
81648.5***
0.4953***
1491290***
39431.5***
Genotype *Site 
177.8
1.935
189.56***
5384
23.93
1092
0
14512***
631.2***
Mean
19.1
5.49
67.68
123.79
37.82
62.68
0
211.88
19.1
LSD
22.5
2.089
15.59
160.8
6.791
58.88
2,78
196
29.75
CV
75.53
27.04
11.62
62.26
12.04
44.93
0.7721
44.22
49.55
SE
14.8
1.516
7.9
78.99
4.661
28.93
13.77
96.31
20.49
R2

Table-6. Factor loadings of the three PCs based on agronomic traits

Trait
Factor Loadings
1
2
3
HSW
-0.00436
0.00148
0.00187
BNP
0.00058
0.00631
-0.00191
DFW
0.03408
-0.10372
-0.0501
PNP
0.41799
0.26113
-0.86868
PDL
0.00519
0.0059
0.00401
PDW
0.20975
0.04508
0.07626
SNP
-0.22688
0.95126
0.17318
SDP
0.83968
0.11403
0.45054
SDY
0.15344
0.03245
0.0638
Eigen values
6983426
2810062
981647
Percentage variation
63.19
25.43
8.88
Cumulative variation
63.19
88.62
97.5

Table-7. Correlations among nine agro-morphological traits of 96 soybean accessions

SDY
SDP
SNP
PDW
PDL
PNP
DFW
BNP
HSW
SDY
-
SDP
0.8805***
 
-
SNP
-0.1863***
-0.2436***
 
-
PDW
0.9186***
0.8634***
-0.1831***
 
-
PDL
0.1564**
0.1547**
0.05
0.1946***
 
-
PNP
0.6144***
0.6451***
-0.0446
0.6164***
.1151**
-
DFW
0.1219**
0.2074***
-0.6303***
0.1749***
-0.0375
0.1422**
-
BNP
0.0423
0.069
0.3093***
0.0756
.1668**
.1799***
0.0334
-
HSW
0.1808***
-0.0536
0.0212
0.0687
-0.017
-0.0351
-0.0962
-0.0528
 
-

Figure-1. A Principal Component Biplot of nine agro-morphological traits of 96 soybean accessions.

Figure-2. A dedrogram on agro-morphological traits of 96 soybean accessions.

3.2. Nutritional Quality Diversity

The nutritional quality traits were analysed using analysis of variance. There were significant differences (P< 0.05) among the soybean accessions planted in Potchefstroom based on ash, moisture, and oil contents (Table 8). The ash content varied between 4.3 and 10.9%. Moisture content varied between 1.7 and 12.8% whereas oil content ranged between 7.1 and 23.9%. In Brits, highly significant differences were observed in fiber, moisture, oil, palmitic acid, and protein contents, and significant differences were observed for linolenic acid (Table 9). Fiber content varied between 4.5 and 5.5%. Moisture varied between 3.1 and 4.6%. Oil content varied between 12.0 and 21.8%. Palmitic acid ranged from 55.9 to 64.2% and protein content varied between 29.6 and 35.8% whereas linolenic acid ranged from 3.1 to 4.7%. When assessing the reaction of the soybean accessions across the two locations, highly significant differences were observed for ash, moisture, oil, oleic acid and stearic acid and significant differences were observed for protein content (Table 10). Ash content varied between 4.3% and 8.2%. Moisture content ranged from 2.8% to 12.8%. Oil content varied between 10.6% and 20.7%. Oleic acid varied between 6.8% and 30.8% and stearic acid ranged between 31.6% and 263.5% whereas protein content was ranging between 29.1% and 35.6%. The two sites showed highly significant differences among the genotypes based on linolenic acid, moisture content, oleic acid, stearic acid and significant differences were observed for linoleic acid and oil content. The genotype x site interaction was significant for ash and non-significant for all other quality traits.

4. Discussion

The principal component analysis (PCA) is a statistical method commonly used in population genetics to identify structure in the distribution of genetic variation across geographical location and ethnic background [19]. The goal is to evaluate the importance of each variable in relation to the total available variation among genotypes. The method provides an opportunity to exclude less important traits in the group studied [20] and simultaneously determine which traits are the most important. In this study, the traits that contributed to the most variation were seed number per pod, pod number per plant, seed number per plant and seed yield.

The correlation information of the tested traits can be provided to the breeders in the direct and indirect selection programmes. The genotypes with significant correlations and desirable traits can be selected concurrently. Moreover, understanding the relationship between yield and its component traits is of great importance to a breeder for making the best use of these relationships in selecting desirable genotypes for yield improvement programs [21, 22]. Significant positive correlations of days to flowering, number of branches and pods per plant, pod length, seed number per pod with seed yield were reported by Malek, et al. [11] which concur with the results in this study. This means that in selecting high yielding genotypes these characters should be given more emphasis as the best selection criteria. Seed yield always showed a positive correlations with other desirable yield traits [23, 24] which indicates that the increase in one trait would result in the increase of the other; that is, simultaneous increase or decrease of both traits would be easy. The strong positive correlation of seed yield with other yield traits indicated that it would be very easy to identify a soybean genotype having higher seed yield simultaneously with higher number of pods per plant and  but difficult with number of seeds per pod. Similar results were reported in other studies [25-28] .

Traditional cluster analysis could provide an easy and effective way in determining the genetic diversity of germplasm collections [29]. It is commonly used to study genetic diversity and for forming core subset for grouping accessions with similar characteristics into one homogenous category [30]. It is also used to summarize information on relationships between accessions by grouping similar units so that the relationship is easily understood. In this study, the accessions were clustered into three major groups of which two of them were further sub clustered into three groups based on the agro-morphological traits measured. The most diverse lines can be used as parents for hybridization for improvement of genes of novelty.

Genetic diversity evaluation among germplasm is a necessity and a prerequisite in any hybridization program and would promote the efficient use of genetic variations [31, 32]. To improve an efficient crop, it is essential to obtain the information on genetic diversity and relationships among breeding materials for a plant breeder. This is because the assessment of genetic diversity is important not only for crop improvement but also for efficient management and conservation of germplasm resources. In this study, the nutritional quality traits showed a vast diversity among the accessions. The oil and protein content were within the range recorded in other studies [33]. The oil content ranged from 13.8% to 22.5% whereas protein ranged between 37.0% and 50.1%) with a mean of 19% and 42.9%, respectively. The vast divergence of the accessions will assist breeders in selecting accessions with good quality for hybridization and conservation.

The analysis of genetic diversity plays a fundamental role in identification of parents [34] and it can help to achieve long-term selection gain [35]. As a traditional method, morphological traits used to assess genetic divergence and classify existing germplasm materials. However, this technique is a low level but powerful taxonomic tool and has been utilized for the preliminary grouping of germplasm prior to their characterization using more precise marker technologies. Although the genetic base of soybean cultivars is considered to be extremely narrow [36] studies of genetic diversity in soybean have been conducted using morphological characteristics [37, 38]. Recently, De Chavez, et al. [39] reported a vast phenotypic diversity among the soybean accessions in Phillipines. Khatab, et al. [12] reported the presence of genetic diversity among soybean genotypes assessed through agro-morphological descriptors. Hamzekhanlu, et al. [40] studied 34 mutant lines including one control cultivar and detected variability for ten quantitative traits in soybean.  Iqbal, et al. [41] reported significant differences among all the assessed phenotypic traits.

5. Conclusion

Most of the traits showed positive correlations between each other, which will assist in the combined improvement of these traits by selecting only highly and positively correlated and easily measurable phenotypic traits although most were highly significant and positively correlated with seed yield per plant. The accessions were clustered into three major groups with subgroups, which showed existence of a vast genetic diversity among the accessions. The most divergent accessions were 2015/06/12, 69 S 10, PR 154-14, R 5-4-2 M, Hawkeye (USSR), and PR 145-2. The nutritional quality traits also varied significantly among the accessions. The presence of genetic diversity can be useful for breeding and selection of parents for transgressive segregation.

Table-8. Means of nutritional quality traits of 96 soybean accessions planted in Potchefstroom.

GM
Ash
Fiber
Linoleic acid
Linolenic acid
Moisture
Oil
Oleic acid
Palmitic acid
Protein
Stearic acid
1120
5.667
5.145
9.284
2.486
6.527
15.19
21.03
61.93
33.9
3.967
1363
5.952
5.215
9.489
3.886
6.272
16.1
23.59
60.36
33.7
4.232
1371
5.429
5.195
9.056
3.959
6.368
13.72
24.41
59.49
34.5
4.405
1380
5.552
5
9.974
4.111
8.677
13.9
22.87
60.02
33.77
4.007
1386
5.867
5.24
10.539
4.556
6.042
13.72
19.85
60.95
35.21
6.242
1390
4.983
4.932
10.179
4.318
7.569
14.11
25.29
58.55
33.76
4.595
1403
5.48
5.26
10.29
4.1
5.54
12.33
19.95
62.26
35.9
3.21
1409
5.04
4.87
8.36
3.75
12.45
17.26
30.02
57.6
31.86
5.59
1449
4.837
4.9
9.709
4.241
11.297
15.78
22.91
60.29
34.75
4.617
1552
6.19
5.22
10.11
4.41
7.13
17.15
23.15
60.14
31.8
4.92
1554
5.242
5.225
8.874
3.911
6.172
15.68
21.39
62.4
35.54
3.392
1555
5.123
5.207
9.129
4.098
6.484
14.87
24.51
61.01
35.49
2.225
1556
5.534
5.14
9.101
4.229
7.023
14.6
25.3
60.94
34.23
3.24
1558
5.051
5.03
8.378
3.566
9.278
17.17
29.86
56.36
32.98
5.793
1572
7.136
5.235
8.413
3.556
7.298
18.14
23.5
62.33
30.45
4.578
1573
5.456
4.819
8.846
3.892
12.784
17.46
26.54
59.14
31.34
7.295
1575
6.97
5.46
10.22
4.44
7.13
16.97
23.96
57.05
30.18
9.39
1578
5.299
5.348
9.399
4.193
5.395
14.88
25.29
61.33
35.7
3.672
1590
6.754
5.418
9.724
4.013
7.395
16.7
26.45
56.36
31.39
6.877
1594
10.938
2.35
29.234
15.461
-1.714
7.1
-33.03
55.74
28.55
10.46
1595
5.478
5.205
9.044
4.106
6.993
16.9
26.66
59.68
33.55
4.008
1596
5.108
5.335
10.424
3.966
6.468
16.37
21.65
60.71
33.61
3.693
1597
5.294
4.808
6.754
3.933
9.32
15.2
30.15
64.35
34.16
2.177
1598
4.469
5.153
9.529
4.093
8.23
16.61
23.57
60.18
34.48
4.442
1599
4.621
5.339
9.041
3.992
6.274
17.31
24.34
61.63
34.46
2.55
1600
5.008
5.365
9.689
4.036
6.133
16.79
22.29
61.73
34.66
2.493
1659
5.698
5.285
9.694
3.981
7.121
15.36
23.93
60.57
34.29
4.71
220
5.855
5.369
10.6
4.012
5.76
14.81
21.19
59.37
33.66
6.642
223
6.205
5.224
11.06
4.292
5.92
15.2
19.23
60.7
33.37
5.997
231
4.902
5.197
9.012
3.788
6.397
17.46
22.19
62.75
33.15
3.991
266
5.072
5.152
9.687
4.258
5.942
14.11
23.09
59.86
34.7
4.866
267
4.95
5.234
9.71
3.922
5.965
14.28
19.94
61.29
35.58
4.992
268
5.14
5.164
9.68
4.252
6.34
14.61
23.31
59.86
35.46
4.317
278
5.342
5.152
9.396
4.084
5.757
13.56
30.4
59.59
34.93
1.981
284
4.77
5.204
9.405
3.912
6.32
16.76
20.86
61.25
33.94
4.932
290
4.782
5.107
9.047
4.133
6.087
14.95
21.95
60.73
34.1
5.741
291
4.662
5.212
9.016
4.089
6.207
15.83
22.22
60.86
34.77
5.021
292
5.192
5.187
10.017
4.073
5.857
14.07
21.79
59.79
34.88
4.331
297
4.857
5.142
8.892
3.938
6.092
15.51
21.81
60.86
33.99
5.366
304
4.587
5.162
8.782
3.973
5.932
16.74
21.69
61.92
33.99
5.291
544
5.107
5.132
10.362
4.448
5.937
13.78
22.94
59.23
34.65
4.891
568
5
5.164
10.23
3.917
5.965
13.43
23.38
55.52
35.76
3.497
571
5.842
4.302
16.497
9.988
5.912
22.58
15.15
63.07
26.23
5.891
575
5.137
5.272
9.836
4.239
7.212
17.13
23.89
60.13
33.36
2.721
578
5.482
5.177
8.937
3.783
6.012
18.28
26.01
60.2
32.48
4.026
582
5
5.229
8.92
4.102
7.115
17.11
25.44
60.06
33.53
1.987
592
5.345
5.159
9.425
4.132
6.095
12.84
23.94
59.64
35.59
4.352
593
4.304
5.104
7.879
3.956
8.242
16.44
27.93
59.13
34.27
2.98
595
5.177
5.201
9.463
4.026
6.669
15.76
23.28
60.71
35.51
3.263
597
5.102
5.221
9.033
3.881
6.354
15.54
23.78
60.49
35.4
2.818
598
5.159
5.224
8.529
3.916
6.597
16.17
23.63
61.31
34.98
2.59
604
5.153
5.314
9.553
3.918
5.92
15.5
22.87
60.5
35.05
3.008
607
5.088
5.169
8.213
3.718
6.37
16.44
24.43
62.18
34.76
2.273
617
4.878
5.234
9.528
4.003
5.86
14.48
20.01
61.45
35.75
5.613
621
4.743
5.164
8.638
4.143
6.02
15.38
24.89
59.69
34.62
5.428
623
5.112
5.181
8.743
4.056
6.274
17.93
22.89
62.27
32.44
4.563
624
5.054
5.159
9.219
4.221
6.402
16.49
23.73
60.77
33.9
3.795
626
5.087
5.011
9.943
4.036
9.414
17.59
24.72
59.85
34.66
4.443
630
4.37
5.06
8.38
3.83
8.65
18.39
28.17
58.57
32.17
3.36
631
5.542
3.941
13.968
9.856
6.344
23.9
16.71
46.62
24.46
2.373
637
5.103
5.169
9.518
4.103
6.845
15.07
22.32
60.43
34.12
4.918
646
5.157
5.131
9.113
4.151
6.394
17.02
22.83
59.95
33.41
7.483
648
5.938
5.369
7.493
6.868
6.475
16.08
13.38
41.59
33.73
33.723
649
4.387
5.126
5.118
4.916
5.399
18.87
20.04
61.29
33.25
3.568
650
5.134
5.069
8.774
4.246
5.682
14.45
22.78
62.33
34.89
5.16
651
4.831
5.153
9.445
4.11
6.015
17.04
23.79
59.84
33.18
4.519
652
5.941
5.128
9.805
4.445
5.875
14.44
21.66
59.92
32.98
6.599
653
5.293
5.229
10.036
4.036
6.031
15.45
12.09
61.07
34.62
4.009
654
5.184
5.195
9.086
4.249
5.785
15.57
22.68
61.96
33.8
4.522
655
4.869
5.18
9.071
4.139
5.395
14.32
22.28
62.96
34.82
3.577
659
5.72
4.92
9.26
4.05
5.24
10.83
22.18
60.25
35.27
8.5
660
4.619
5.228
8.759
3.764
6.234
17.25
22.03
62.23
33.75
4.525
662
5.083
5.184
8.866
4.006
6.431
14.58
23.94
60.78
34.19
2.099
664
5.054
5.145
9.086
3.914
6.285
15.43
23.44
59.93
34.11
3.772
666
4.809
5.15
9.021
3.979
6.22
16.37
21.66
61.51
34.33
4.497
668
5.004
5.045
9.356
3.994
6.195
14.28
22.88
59.44
33.9
4.572
673
5.532
5.276
9.296
3.895
5.642
15.31
22.64
61.62
34.37
5.398
675
5.177
5.251
9.551
3.985
6.012
15.29
22.99
60.59
34.77
3.373
678
4.894
5.195
9.626
3.884
6.08
16.71
22.18
60.25
33.61
4.907
679
5.474
5.13
10.371
4.384
5.575
13.3
23.11
59.6
34.39
3.247
681
4.748
5.064
7.856
4.106
6.421
17.04
27.41
59.14
33.78
4.844
688
4.898
5.104
9.986
4.086
6.036
14.81
21.4
60.03
34.15
4.814
691
5.327
5.226
10.631
3.97
6.707
15.88
21
60.6
34.35
3.913
699
6.404
5.318
8.919
4.309
6.794
20.25
26.43
60.59
30.6
4.705
707
5.418
5.244
9.576
3.934
6.617
14.95
23.45
60.24
34.72
3.763
715
5.289
5.185
9.136
3.809
5.945
13.93
21.78
61.84
35.65
3.602
724
5.158
5.019
8.686
4.151
5.326
14.32
24.83
61.34
32.45
4.229
725
5.19
5.08
9.12
4.65
6.18
15.18
26.75
58.94
31.94
5.47
861
5.144
5.265
9.466
3.964
6.253
16.93
21.56
61.14
33.62
4.635
862
5.103
5.102
9.704
4.308
5.599
14.66
21.66
60.26
34.39
5.625
864
5.002
5.185
9.464
3.866
5.927
15.94
20.59
60.99
33.72
5.617
873
5.077
5.13
10.029
4.041
6.187
13.79
19.55
61.08
34.45
4.967
DUNDEE
5.764
5.112
9.966
4.083
5.968
11.99
22.34
59.17
34.7
4.383
DUNDEE*
5.362
5.225
9.413
3.776
6.089
14.96
22.98
60.08
34.2
3.849
EGRET
5.521
5.053
10.072
4.244
6.261
15.13
20.19
59.91
33.16
4.892
EGRET*
5.137
5.235
9.133
3.796
6.114
14.28
21.85
61.57
35.17
3.814
HERON
5.273
5.175
9.399
3.791
5.588
14.34
21.16
60.75
34.45
4.278
IBIS
5.513
5.175
9.659
3.981
6.018
13.97
21.1
61.07
34.6
4.573
F-prob
0.02
0.42
0.622
0.492
0.038
0.047
0.802
0.771
0.396
0.512
LSD
1.72
9626
7.039
4.214
3.524
4.509
20.47
8.438
4.649
9.342
CV
16.02
9.3
36.13
48.41
26.95
14.31
45.42
6.95
6.8
96.94
SE
0.8506
0.4762
3.482
2.085
1.743
2.231
10.12
4.174
2.3
4.621

Table-9. Means of nutritional quality traits of 96 soybean accessions planted in Brits

Genotype
Ash (%)
Fiber (%)
Linoleic acid (%)
Linolenic acid (%)
Moisture (%)
Oil (%)
Oleic acid (%)
Palmitic acid (%)
Protein (%)
Stearic acid (%)
1120
5.511
5.063
9.472
4.178
7.726
15.25
23.15
60.16
33.51
3.413
1363
4.621
4.733
8.207
3.618
11.121
15.84
30.18
55.87
32.49
5.443
1371
5.726
5.084
9.129
3.877
6.014
12.46
22.49
60.08
34.53
4.279
1380
4.766
4.903
8.517
4.053
8.676
16.28
27.32
59.2
33.35
3.553
1386
5.746
5.283
9.627
3.898
5.241
15
21.38
61.78
35.26
3.618
1390
5.679
5.112
9.662
4.138
5.57
13.35
21.43
61.74
33.77
3.039
1403
5.859
5.277
9.687
4.298
5.415
14.72
24.31
61.46
34.9
1.619
1409
5.046
4.753
8.732
4.008
11.141
14.63
24.91
61.78
35.04
4.673
1449
5.331
5.068
7.622
3.088
5.951
15.15
21.49
64.23
33.69
3.593
1552
5.761
5.069
8.939
4.007
6.599
12.34
20.89
61.43
34.32
4.124
1554
5.921
5.243
9.012
3.728
5.861
14.85
22.02
61.98
34.85
3.083
1555
5.634
5.092
8.512
4.193
7.485
12.01
27.41
61.85
34.48
3.599
1556
6.011
5.114
8.959
3.982
5.849
14.39
22.04
62.6
32.98
3.694
1558
3.92
4.66
9.35
4.06
11.3
16.29
25.66
57.51
33.71
6.81
1572
4.724
4.511
8.359
3.809
13.055
16.6
24.42
60.51
32.23
7.096
1573
4.763
4.641
9.899
3.836
12.802
16.77
21.92
60.2
32.75
7.536
1575
4.865
4.739
8.732
3.892
10.789
13.52
26
58.65
33.96
5.822
1578
5.02
4.954
8.957
3.977
10.129
17.18
25.38
59.46
32.74
4.577
1590
4.73
4.844
8.937
4.097
10.764
15.98
24.09
59.59
32.87
4.192
1594
5.263
4.991
9.644
4.168
7.704
14.71
21.73
60.45
33.31
3.963
1595
5.283
5.167
8.376
4.174
8.012
16.31
23.11
62.55
33.13
5.225
1596
5.028
5.072
9.066
3.914
8.742
18.04
22.83
61.2
32.44
4.7
1597
5.66
5.169
7.837
3.842
6.614
14.85
26.16
62.01
33.83
3.127
1598
4.215
5.194
7.627
3.897
7.564
18.84
29.36
58.55
32.99
2.277
1599
4.738
5.276
9.069
4.001
5.597
17.77
24.59
61.12
33.97
2.191
1600
4.653
5.177
9.086
4.064
7.522
17.5
25.75
57.49
33.39
2.925
1659
5.508
5.111
8.919
4.048
7.034
13.85
22.07
63.04
35.1
3.188
220
4.621
4.98
8.438
4.435
5.853
15.84
25.74
61.12
33.95
2.471
223
5.186
5.065
8.848
4.395
5.168
17.82
23.88
62.27
32.87
2.421
231
5.255
5.078
8.329
3.955
7.664
17.96
28.31
59.36
31.26
2.216
266
5.185
5.188
8.994
3.111
5.934
15.87
22.93
62.6
34.25
2.571
267
4.466
4.95
8.738
4.21
10.298
18.04
23.03
59.75
33.07
4.056
268
6.31
5.23
8.75
3.34
5.81
16.66
23.73
62.38
33.66
2.45
278
4.77
4.999
8.859
4.591
6.883
15.31
30.95
58
34.78
0.953
284
4.26
4.93
8.85
4.1
10.32
17.71
24.35
60.1
32.85
4.4
290
4.825
5.258
9.069
4.04
5.854
16.98
22.98
62.98
34.76
3.776
291
5.395
5.224
8.659
3.581
5.138
17.29
25.83
62.11
33.81
0.928
292
4.64
4.68
9.83
4.24
11.91
16.97
26.03
56.44
32.59
6.42
297
4.34
5.078
7.804
3.875
7.104
17.4
27.07
58.74
34.09
3.166
304
4.9
5.03
7.68
3.86
8.04
18.83
24.67
61.52
31.42
4.4
544
5.4
5.25
8.42
3.88
5.36
16.38
24.39
62.49
34.49
1.78
568
5.54
5.18
8.87
4
5.32
16.77
25.02
61.43
33.08
1.91
571
5.415
5.518
8.619
4.095
5.134
15.5
24.35
63.03
34.47
0.991
575
5.29
5.229
9.004
4.606
5.358
17.35
21.3
63.4
32.68
3.538
578
5.085
5.243
8.254
3.88
6.449
17.87
25.23
60.86
32.89
3.716
582
5.081
5.215
7.783
3.935
5.478
19.92
23.28
63.27
31.39
3.376
592
4.796
4.915
9.248
4.095
8.703
16.99
30.87
57.01
33.58
3.326
593
4.809
4.965
7.562
3.866
8.112
18.12
28.42
59.12
31.99
3.22
595
5.201
5.186
8.956
4.398
6.523
16.88
24.88
60.73
34.11
1.035
597
5.201
5.116
8.706
4.033
6.813
13.53
24.79
60.36
35.77
2.425
598
5.044
5.055
8.607
3.901
6.782
13.63
23.84
61.46
35.4
2.74
604
5.37
5.26
9.6
4.22
5.78
14.49
23.76
60.74
35.65
1.74
607
5.31
5.19
9.11
4.02
5.65
15.53
22.08
62.03
34.04
3.09
617
4.32
5.02
8.53
3.84
8.73
16.89
24.84
58.43
33.21
5.34
621
4.52
4.97
8.57
4.32
8.78
13.53
27
57.83
35.1
4.54
623
4.516
4.956
7.176
3.708
8.358
19.85
28.21
60.96
31.07
3.085
624
4.799
5.005
7.532
3.891
8.162
17.36
25.71
60.04
32.22
4.365
626
5.291
5.036
9.201
4.028
8.833
16.8
25.46
60.46
33.75
4.48
630
5.081
5.305
7.952
3.687
5.888
18.86
23.46
63.57
31.41
3.763
631
4.971
4.981
7.211
4.148
7.793
13.54
33.05
56.5
33.98
1.36
637
5.456
5.235
9.242
3.772
5.483
16.52
21.18
63.03
33.57
4.063
646
5.306
5.171
8.776
3.803
6.663
15.94
23.16
60.11
33.59
4.21
648
4.961
5.055
8.402
3.937
7.608
17.85
14.17
61.54
31.93
3.428
649
4.466
5.121
8.301
4.028
5.898
16.47
25.97
61.16
34.12
2.72
650
4.969
5.115
8.122
4.451
6.837
18.22
24.76
63.32
32.86
2.42
651
5.194
5.231
13.829
4.645
5.617
17.1
25.38
60.94
33.25
2.148
652
5.714
5.126
8.424
3.955
5.682
16.22
26.71
60.96
32.97
1.638
653
5.609
5.254
8.592
3.871
5.61
17.03
22.92
63.58
32.52
1.248
654
4.921
5.049
8.714
4.234
8.584
15.89
31.67
60.53
33.66
3.78
655
5.626
5.129
8.809
4.029
6.554
17.58
22.07
62.74
34.75
2.995
659
4.642
4.853
7.912
3.935
8.086
14.24
26.63
60.17
35.29
2.756
660
5.714
5.248
9.547
4.052
6.912
18.19
22.18
60.74
32.34
5.453
662
5.64
5.2
9.63
3.97
5.58
13.18
23.75
60.25
34.89
1.86
664
4.186
4.934
7.704
4.224
6.489
15.72
26.12
60.17
33.87
3.505
666
5.306
5.229
9.314
3.949
5.769
15.55
21.39
61.71
34.25
3.115
668
4.43
4.79
8.31
4.31
9.88
14.89
30.6
56.22
33.4
4.7
673
5.357
5.168
7.767
3.615
5.961
17.5
24.28
63.57
33.68
2.436
675
5.497
5.253
8.372
3.99
5.591
18.07
24.66
63.44
32.95
1.351
678
5.356
5.114
9.439
4.019
6.874
14.52
21.87
60.76
33.42
4.285
679
4.781
5.009
9.349
4.179
7.534
14.38
27.25
58.13
34.66
2.235
681
4.659
4.869
8.202
3.631
8.825
17.01
27.35
59.37
32.43
4.498
688
4.399
5.089
8.232
4.061
7.475
18.24
27.97
59.05
33.14
3.323
691
4.79
5.1
8.69
4.07
7.3
15.37
24.31
60.73
33.77
4.02
699
5.87
5.31
8.7
3.51
5.93
21.75
26.34
62.21
29.58
4.04
707
4.73
4.74
9.35
4.3
11.52
14.62
28.05
57.34
34.4
3.8
715
5.031
5.159
8.614
3.874
7.839
17.28
26.45
59.85
33.73
2.135
724
5.449
5.164
8.877
4.536
5.58
16.8
26.04
61.12
32.94
1.113
725
5.51
5.24
9.19
4.07
5.54
17.92
24.15
61.46
32.2
2.23
861
5.51
5.28
9.88
4.05
5.84
17.39
23.23
60.94
33.62
2.34
862
5.939
5.202
9.892
3.998
5.41
13.68
20.99
60.66
33.86
4.224
864
5.131
5.193
8.082
4.113
6.686
15.71
27.48
60.53
33.89
-0.61
873
5.631
5.228
9.792
4.058
5.721
14.84
25.23
60.9
34.46
2.433
DUNDEE
5.763
5.16
9.701
4.137
5.509
14.29
24.18
59.75
34.3
2.896
DUNDEE*
5.745
5.238
9.254
4.009
5.664
16.58
24.84
60.19
33.25
2.894
EGRET
4.911
5.031
8.949
4.072
8.081
16.14
25.65
58.18
33.02
3.51
EGRET*
5.245
4.968
8.694
3.724
8.944
17.75
28.28
59.01
32.43
4.264
HERON
5.028
5.162
7.781
3.994
6.667
16.09
29.54
58.16
34.15
2.325
IBIS
5.383
5.092
8.151
3.819
6.972
13.85
25.89
60.42
35.55
2.775
F-prob
0.224
0.004
0.079
0.03
0.012
0.001
0.217
0.018
0.002
0.069
LSD
1.153
0.3602
2.105
0.6042
4.113
3.218
7.386
4.319
2.199
3.3
CV
10.55
3.33
11.3
7.1
26.81
9.35
13.94
3.34
3.09
47.16
SE
0.5428
0.1696
0.9908
0.2844
1.936
1.515
3.477
2.024
1.035
1.547

Table-10. Means of nutritional quality traits across the two sites. Potchefstroom and Brits in 2016/17

Genotype
Ash (%)
Fiber (%)
Linoleic acid (%)
Linolenic acid (%)
Moisture (%)
Oil (%)
Oleic acid (%)
Palmitic acid (%)
Protein (%)
Stearic acid (%)
1120
5.605
5.114
9.359
3.292
7.049
15.24
22.07
61.09
33.7
134.3
1363
5.319
4.99
8.851
3.741
8.565
15.99
26.79
58.21
33.11
184
1371
5.594
5.132
9.164
3.955
6.157
13.08
23.28
59.84
34.5
171.6
1380
5.184
4.962
9.251
4.068
8.617
15.07
25.04
59.64
33.56
142.7
1386
5.821
5.27
10.08
4.222
5.594
14.35
20.6
61.37
35.23
191.8
1390
5.319
5.023
9.894
4.22
6.583
13.78
23.54
60.08
33.75
147.3
1403
5.726
5.273
9.906
4.229
5.45
13.9
22.78
61.77
35.24
59.7
1409
5.058
4.803
8.606
3.921
11.537
15.58
26.69
60.31
33.9
181.9
1449
5.09
4.99
8.68
3.667
8.644
15.49
22.23
62.21
34.23
163.9
1552
5.915
5.124
9.353
4.153
6.783
14.05
21.7
60.99
33.42
175.9
1554
5.585
5.243
8.925
3.807
5.962
15.29
21.7
62.21
35.2
109.8
1555
5.37
5.155
8.796
4.133
6.953
13.52
26.04
61.41
34.98
97.6
1556
5.786
5.118
9.105
4.145
6.415
14.48
23.52
61.81
33.61
121.2
1558
4.702
4.908
8.715
3.739
9.917
16.93
28.4
56.73
33.18
250.1
1572
5.984
4.886
8.401
3.689
10.06
17.37
23.88
61.43
31.31
227.1
1573
5.128
4.723
9.362
3.881
12.784
17.07
24.14
59.59
32.03
263.5
1575
5.605
4.994
9.257
4.086
9.523
14.8
25.31
58.07
32.59
252.4
1578
5.147
5.144
9.197
4.117
7.73
16.01
25.34
60.34
34.23
154.7
1590
5.755
5.126
9.355
4.082
9.067
16.37
25.31
57.84
32.08
199.7
1594
8.197
3.611
19.842
10.049
2.843
10.75
-6.76
58.03
30.83
110.5
1595
5.378
5.178
8.749
4.162
7.493
16.61
24.83
61.02
33.33
178.4
1596
5.064
5.199
9.794
3.964
7.577
17.18
22.12
60.9
33.02
158
1597
5.455
4.97
7.292
3.917
8.045
15.05
28.22
63.14
33.97
108.7
1598
4.329
5.16
8.619
4.026
7.945
17.71
26.38
59.31
33.73
117.3
1599
4.686
5.299
9.06
4.013
5.936
17.48
24.3
61.32
34.24
67.2
1600
4.83
5.266
9.425
4.073
6.813
17.13
23.86
59.63
34.02
83.3
1659
5.618
5.18
9.43
4.081
7.066
14.59
22.73
61.78
34.66
150.2
220
5.249
5.176
9.559
4.216
5.926
15.29
23.53
60
33.8
148.6
223
5.703
5.143
9.995
4.341
5.676
16.45
21.62
61.24
33.12
159.1
231
5.087
5.14
8.621
3.86
7.036
17.8
25.23
61.1
32.16
105.9
266
5.14
5.17
9.291
3.692
5.963
15.06
23.09
61.17
34.4
134.2
267
4.707
5.092
9.247
4.061
8.188
16.09
21.58
60.33
34.35
189
268
5.528
5.187
9.365
3.95
6.169
15.29
23.47
60.68
34.86
137.9
278
5.068
5.073
9.141
4.338
6.384
14.45
30.78
58.76
34.82
35.7
284
4.603
5.115
9.214
3.973
7.644
17.08
22.04
60.86
33.57
190.6
290
4.816
5.181
8.998
4.079
5.999
16.03
22.52
61.81
34.34
187.9
291
5.021
5.213
8.848
3.85
5.769
16.58
24.08
61.41
34.26
115.7
292
5.01
5.022
9.936
4.113
7.864
15
23.24
58.65
34.14
200.6
297
4.62
5.112
8.305
3.898
6.608
16.53
24.43
59.82
33.96
166.4
304
4.691
5.121
8.399
3.92
6.637
17.41
22.73
61.75
33.16
209.1
544
5.204
5.173
9.701
4.245
5.756
14.62
23.48
60.26
34.62
150.5
568
5.18
5.17
9.773
3.943
5.756
14.54
23.95
57.45
34.87
96.5
571
5.648
4.893
12.615
7.12
5.559
19.24
19.69
63.04
30.15
31.6
575
5.215
5.246
9.438
4.425
6.393
17.28
22.74
61.65
32.99
109.7
578
5.303
5.21
8.546
3.821
6.249
18.18
25.7
60.51
32.6
146
582
5.032
5.218
8.376
4.02
6.441
18.45
24.53
61.4
32.49
83.5
592
5.071
5.037
9.347
4.113
7.481
14.83
27.44
58.15
34.61
153.6
593
4.55
5.04
7.756
3.901
8.185
17.2
28.22
59.08
33.2
103.8
595
5.199
5.201
9.217
4.179
6.559
16.26
24.09
60.73
34.87
65.3
597
5.161
5.177
8.874
3.927
6.538
14.53
24.31
60.44
35.62
74.8
598
5.104
5.146
8.598
3.897
6.693
14.89
23.78
61.33
35.22
78.6
604
5.223
5.295
9.598
4.017
5.867
15.17
23.09
60.62
35.24
74.4
607
5.16
5.173
8.522
3.817
6.137
16.13
23.65
62.18
34.54
71.3
617
4.697
5.161
9.229
3.954
6.798
15.25
21.55
60.5
34.92
228.2
621
4.672
5.098
8.646
4.206
6.921
14.75
25.53
59.12
34.78
214
623
4.833
5.079
7.982
3.859
7.246
18.82
25.51
61.65
31.81
134
624
4.931
5.088
8.432
4.05
7.262
16.86
24.74
60.37
33.12
153.3
626
5.197
5.03
9.583
4.004
9.093
17.17
25.12
60.15
34.26
168.9
630
4.828
5.218
8.115
3.74
6.875
18.68
25.15
61.78
31.69
129.4
631
5.276
4.453
10.689
7.059
7.008
18.84
24.68
51.41
29.12
57
637
5.277
5.2
9.415
3.948
6.178
15.75
21.74
61.71
33.86
171.4
646
5.24
5.158
8.949
3.954
6.486
16.46
23.03
60.04
33.54
219.3
648
5.467
5.215
7.965
5.451
7.018
16.91
13.73
51.27
32.86
184.3
649
4.436
5.131
6.662
4.457
5.602
17.67
22.95
61.24
33.71
102.5
650
5.055
5.095
8.489
4.334
6.248
16.22
23.79
62.76
33.94
134.3
651
4.999
5.195
11.578
4.347
5.836
17.09
24.72
60.35
33.22
121.1
652
5.823
5.131
9.141
4.184
5.796
15.32
24.27
60.4
32.99
148.6
653
5.443
5.248
9.314
3.95
5.779
16.28
17.31
62.33
33.59
85.3
654
5.041
5.125
8.878
4.238
7.149
15.81
27.11
61.3
33.71
162.6
655
5.221
5.156
8.917
4.082
5.964
15.98
22.24
62.88
34.76
112.7
659
5.011
4.879
8.374
3.976
7.064
12.96
25.05
60.19
35.33
149.9
660
5.154
5.243
9.085
3.896
6.498
17.73
22.03
61.61
33.07
169.5
662
5.263
5.19
9.109
3.987
6.163
14.14
23.87
60.61
34.42
47.2
664
4.618
5.044
8.388
4.061
6.39
15.65
24.81
60.08
33.97
133.5
666
5.035
5.189
9.136
3.961
6.008
16.05
21.59
61.63
34.27
142.7
668
4.818
4.966
9.012
4.089
7.349
14.49
25.32
58.43
33.74
192.1
673
5.441
5.225
8.551
3.767
5.794
16.35
23.38
62.55
34.05
143.6
675
5.326
5.253
8.976
3.995
5.804
16.62
23.75
61.96
33.9
70.1
678
5.103
5.157
9.508
3.946
6.472
15.72
22.1
60.53
33.5
187.7
679
5.123
5.072
9.848
4.281
6.532
13.9
25.19
58.91
34.5
83
681
4.701
4.976
8.003
3.87
7.539
17.09
27.35
59.3
33.11
189.4
688
4.652
5.103
9.114
4.068
6.686
16.53
24.56
59.6
33.65
156.9
691
5.168
5.187
10.044
4.011
6.893
15.76
21.95
60.64
34.14
149.1
699
6.233
5.317
8.843
4.033
6.52
20.73
26.37
61.08
30.28
183
707
5.197
5.072
9.543
4.076
8.228
14.84
24.84
59.32
34.61
141.2
715
5.149
5.173
8.855
3.837
6.87
15.64
24.11
60.91
34.7
94
724
5.296
5.096
8.758
4.332
5.401
15.59
25.39
61.28
32.67
93.1
725
5.353
5.161
9.156
4.355
5.855
16.57
25.43
60.21
32.07
144.5
861
5.284
5.256
9.696
4.036
6.078
17.05
21.82
61.14
33.6
150.5
862
5.507
5.154
9.761
4.147
5.491
14.22
21.46
60.44
34.12
197.4
864
5.078
5.198
8.777
3.971
6.236
15.84
23.94
60.84
33.79
165
873
5.359
5.187
9.898
4.034
5.901
14.32
22.31
61.01
34.45
136.1
DUNDEE
5.773
5.122
9.907
4.131
5.755
13.08
23.19
59.27
34.47
137.7
DUNDEE*
5.55
5.218
9.397
3.938
5.906
15.71
23.7
60.04
33.72
121.8
EGRET
5.212
5.1
9.277
3.975
7.107
15.77
23.55
58.98
33.15
170.7
EGRET*
5.192
5.092
8.981
3.81
7.51
15.92
24.79
60.24
33.83
159
HERON
5.149
5.16
8.643
3.913
6.118
15.19
25.12
59.44
34.28
118
IBIS
5.444
5.126
8.956
3.926
6.487
13.91
23.32
60.71
35.04
138.5
Genotype
0.8203***
0.1472
0.93
2.282
6.577***
.766***
55.09
12.59
4.906*
8854***
Site
3.0554
0.067
9.68**
9.210*
9.696***
37.343**
666.57***
25.12
7.737
250321***
Genotype * Site 
0.6848*
0.1363
0.79
2.15
3.906
5.117
41.15
8.64
3.219
4359
Mean
5.12
5
9.03
4.07
6.7
15.56
23.11
59.15
33.02
139.23
LSD
1.48
0.7804
5.479
3.208
3.865
4.281
15.93
7.018
3.798
129.4
CV
13.77
7.44
28.94
37.55
27.54
13.12
32.9
5.65
5.49
44.54
SE
0.7204
0.3799
2.667
1.562
1.882
2.084
7.756
3.409
1.849
62.24
R2

*** p<0.001, ** p< 0.025 and *p< 0.05

References

[1]          Food and Agriculture Organisation of the United Nations, "FAO statistics division, FAOSTAT database." Retrieved: http://www.fao.org/docrep/016/i3027e/i3027e.pdf, 2012.

[2]          Food and Agriculture Oorganisation, "FAO statistics division, FAOSTAT database." Retrieved: http://www.fao.org/docrep/016/i3027e/i3027e.pdf, 2012.

[3]          M. Aslam, M. S. Mirza, S. M. Shah, S. Shafeeq, and U. Naeem, Crop production Bulletin No. 6. Islamabad, Pakistan: Pakistan Agricultural Research Council, 1995.

[4]          A. Ghafoor, A. Zahoor, A. S. Qureshi, and M. Bashir, "Genetic relationship in Vigna mungo (L.) Hepper and V. radiata (L.) R. Wilczek based on morphological traits and SDS-PAGE," Euphytica, vol. 123, pp. 367-378, 2002. View at Google Scholar 

[5]          G. L. Brown-Guedira, J. A. Thompson, R. L. Nelson, and M. L. Warburton, "Evaluation of genetic diversity of soybean introductions and North American ancestors using RAPD and SSR markers," Crop Science, vol. 40, pp. 815-823, 2000. View at Google Scholar | View at Publisher

[6]          Y. B. Fu, "Applications of bulking in molecular characterization of plant germplasm: A critical review," Plant Genetic Resources, vol. 1, pp. 161-167, 2003.View at Google Scholar | View at Publisher

[7]          P. Smykal, J. Horacek, R. Dostalova, and M. Hybl, "Variety discrimination in pea (Pisum Sativum L.) by molecular, biochemical and morphological markers," Journal of Applied Genetics, vol. 49, pp. 155-166, 2008. View at Google Scholar | View at Publisher

[8]          M. Khalid, F. Farhatullah, N. U. Khan, R. Din, K. M. Yasir, M. Akmal, and N. Ali, "Linkage of morphological markers in Brassica," Pakistan Journal of Botany, vol. 42, pp. 2995-3000, 2010.View at Google Scholar 

[9]          A. Kumar, A. Pandey, C. Aochen, and A. Pattanayak, "Evaluation of genetic diversity and interrelationships of agro-morphological characters in soybean (Glycine Max) genotypes," in Proceedings of the National Academy of Sciences. India Section B: Biological Sciences, 2015, pp. 397-405.

[10]        P. Vesna, N. Ana, B. Vojka, S. Aleksanda, M. S., D. Vuk, and M. D. Snežana, "Genetic relatedness of soybean genotypes based on agromorphological traits and RAPD markers," Genetika, vol. 46, pp. 839-854, 2014. View at Google Scholar | View at Publisher

[11]        M. A. Malek, M. Y. Raffi, M. S. S. Afroj, U. K. Nath, and M. M. A. Mondol, "Morphological characterization and assessment of genetic variability, character association, and divergence in soybean mutants," Scientific World Journal, pp. 1-12, 2014. View at Publisher

[12]        I. A. Khatab, A. R. Morsy, W. M. Fares, and T. Kumamaru, "Genetic diversity of soybean genotypes revealed by agro–morphological and SSR markers," Journal of the Faculty of Agriculture, Kyushu University, vol. 61, pp. 79-87, 2016. View at Google Scholar 

[13]        R. W. Yaklich, B. Vinyard, M. Camp, and S. Douglass, "Analysis of seed protein and oil from soybean Northern and Southern Region uniform tests," Crop Science, vol. 42, pp. 1504-1515, 2002. View at Publisher

[14]        S. M. Potter, J. A. Baum, H. Y. Teng, R. J. Stillman, N. F. Shay, and J. W. Erdman, "Soy protein and isoflavones: Their effects on blood lipids and bone density in postmenopausal women," American Journal of Clinical Nutrition, vol. 68, pp. 1375S-1379S, 1998. View at Google Scholar | View at Publisher

[15]        Anonymous, "16 surprising sources of protein." Retrieved: http://www.fitday.com/fitness-articles/fitness/16-surprising-sources-of-protein.html, 2015.

[16]        M. N. Lokuruka, "Soybean nutritional properties: The good and the bad about soy foods consumption- a review," African Journal of Food Agriculture Nutrition and Development, vol. 10, pp. 2439-2458, 2010. View at Google Scholar | View at Publisher

[17]        K. J. Helzlsouer, H. Y. Huang, A. J. Alberg, S. Hoffman, A. Burke, E. P. Norkus, J. S. Morris, and G. W. Comstock, "Association between α-tocopherol, γ-tocopherol, selenium and subsequent prostate cancer," Journal of Natural Cancer Institute, vol. 92, pp. 2018-2023, 2000. View at Google Scholar | View at Publisher

[18]        A. Farooq, M. K. Ghulam, N. Farooq, and S. Ghulam, "Variations of quality characteristics among oils of different soybean varieties," Journal of King Saud University – Science, vol. 28, pp. 332-338, 2016.View at Google Scholar | View at Publisher

[19]        G. McVean, "A genealogical interpretation of principal components analysis," PLoS Genetics, vol. 5, p. e1000686, 2009. View at Google Scholar | View at Publisher

[20]        C. D. Cruz and P. C. S. Carneiro, Biometric models applied to genetic improvement. Viçosa: UFV, 2003.

[21]        A. A. Ismail, M. A. Khalifa, and H. A. K., "Genetic studies on some yield traits of durum wheat," Asian Journal of Agricultural Science, vol. 32, pp. 103-129, 2001.

[22]        P. Kumar and R. S. Shukla, "Genetic analysis for yield and its attributed traits in bread wheat under various situations," Jawaharlal Nehru Krishi Vishwa Vidyalaya Research Journal, vol. 36, pp. 95-97, 2002. View at Google Scholar 

[23]        S. C. Anand and J. H. Torrie, "Heritability of yield and other traits and interrelationship among traits in the F3 an F4 generations of three soybean crosses," Crop Science, vol. 3, pp. 508-511, 1963. View at Google Scholar | View at Publisher

[24]        M. Arashad, N. Ali, and A. Ghafoor, "Character correlation and path coefficient in soybean Glycine max (L.) Merrill," Pakistan Journal of Botany, vol. 38, pp. 121-130, 2006. View at Google Scholar 

[25]        J. P. Aditya, P. Bhartiya, and A. Bhartiya, "Genetic variability, heritability and character association for yield and component characters in soybean (G. max (L.) Merrill)," Journal of Central European Agriculture, vol. 12, pp. 27-34, 2011. View at Google Scholar 

[26]        T. Machikowa, A. Waranyuwat, and P. Laosuwan, "Relationships between seed yield and other characters of different maturity types of soybean grown in different environments and levels of fertilizer," Science Asia, vol. 31, pp. 37-41, 2005. View at Google Scholar 

[27]        T. Machikowa and P. Laosuwan, "Path coefficient analysis for yield of early maturing soybean," Songklanakarin Journal of Science and Technology, vol. 33, pp. 365-368, 2011. View at Google Scholar 

[28]        D. K. Ojo, A. A. O., and O. O. A., "Genetic relationships among soybean accessions based on morphological and RAPDs techniques," Pertanika Journal of Tropical Agricultural Science, vol. 35, pp. 237-248, 2012. View at Google Scholar 

[29]        V. Belamkar, M. G. Selvaraj, J. L. Ayers, P. R. Payton, N. Puppala, and M. D. Burow, "A first insight into population structure and linkage disequilibrium in the US peanut minicore collection," Genetica, vol. 139, pp. 411-429, 2011. View at Google Scholar | View at Publisher

[30]        V. Ulaganathan and A. Nirmalakumari, "Finger millet germplasm characterization and evaluation using principal component analysis," Sabrao Journal of Breeding and Genetics, vol. 47, pp. 79-88, 2015. View at Google Scholar 

[31]        S. L. Dwivedi, S. Gurtu, S. Chandra, W. Yuejin, and S. N. Nigam, "Assessment of genetic diversity among selected groundnut germplasm by RAPD analysis," Plant Breeding, vol. 120, pp. 345-350, 2001. View at Google Scholar | View at Publisher

[32]        A. H. Paterson, S. Damon, J. D. Hewitt., D. Zamir, H. D. Rabinowitch, L. S.E., L. E.S., and S. D. Tanksley, "Genetics. Mendelian factors underlying quantitative traits in tomato: Comparison across species, generations and environments," Genetics, vol. 127, pp. 181-197, 1991. View at Google Scholar 

[33]        A. Shi, P. Chen, B. Zhang, and A. Hou, "Genetic diversity and association analysis of protein and oil content in foodgrade soybeans from Asia and the United States," Plant Breeding, vol. 129, pp. 250-256, 2010. View at Google Scholar | View at Publisher

[34]        M. S. Mazid, M. Y. Rafii, M. M. Hanafi, H. A. Rahim, M. Shabanimofrad, and M. A. Latif, "Agro-morphological characterization and assessment of variability, heritability, genetic advance and divergence in bacterial blight resistant rice genotypes," South African Journal of Botany, vol. 86, pp. 15-22, 2013. View at Google Scholar | View at Publisher

[35]        M. A. Chowdhury, B. Vandenberg, and T. Warkentin, "Cultivar identification and genetic relationship among selected breeding lines and cultivars in chickpea (Cicer Arietinum L.)," Euphytica, vol. 127, pp. 317-325, 2002. View at Google Scholar 

[36]        T. Hymowitz, "On the domestication of the soybean," Economic Botany, vol. 24, pp. 408-421, 1970. View at Google Scholar | View at Publisher

[37]        R. D. Almeida, J. M. Peluzio, and F. S. Afférri, "Divergência genética entre cultivares de soja, sob condições de várzea irrigada, no sul do Estado Tocantins," Revista Ciência Agronômica, vol. 42, pp. 108-115, 2011. View at Publisher

[38]        M. C. G. Cunha, O. T. Hamawaki, and L. B. Sousa, "Genetic variability among 79 soybean progenies from ufu breeding program," Bioscience Journal, vol. 29, pp. 340-349, 2013. View at Google Scholar 

[39]        H. De Chavez, T. Borromeo, B. N. Oswald, and R. Gentallan, "Phenotypic diversity of soybean (Glycine max (L.) Merr.) accessions in the Philippines for utilization," Legume Research-An International Journal, vol. 40, pp. 9-15, 2017. View at Google Scholar | View at Publisher

[40]        M. Y. Hamzekhanlu, A. I. Darbandi, P. Beiranvand, M. T. Hallajian, and A. Majdabadi, "Phenotypic and molecular analysis of M7 generation of soybean mutant lines through random amplified polymorphic DNA (RAPD) marker and some morphological traits," African Journal of Agricultural Research, vol. 6, pp. 1779-1785, 2011. View at Google Scholar 

[41]        Z. Iqbal, M. Arshad, M. Ashraf, T. Mahmood, and A. Waheed, "Evaluation of soybean [Glycine Max (L.) Merrill] germplasm for some important morphological traits using multivariate analysis," Pakistan Journal of Botany, vol. 40, pp. 2323-2328, 2008. View at Google Scholar 

Asian Online Journal Publishing Group is not responsible or answerable for any loss, damage or liability, etc. caused in relation to/arising out of the use of the content. Any queries should be directed to the corresponding author of the article.