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Abstract 

This paper presents the design of an optimized Compressive Sensing image compression technique for 

data transmission over noisy mobile wireless channel. The proposed technique is more robust to channel 

noise. It uses individual measurement driven coding scheme, which facilitates simpler encoder design. 

The shift of computational burden from encoder to decoder is more suitable for mobile devices 

applications where computational power and battery life are limited. This paper also presents a novel 

quantizer which allows the encoder to dynamically adapt to the channel conditions and provides 

optimum performance.   
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1. Introduction 
As more and more mobile devices are being used with new innovations to support multimedia applications, e.g, 

Instagram, Facebook, wireless spectrum is becoming increasingly scarce The evolution of new applications is 

demanding spectrum available to the increasing mobile users [1]. The design of mobile devices for inclusion of new 

and evolving multimedia applications faces big challenges due to: a) limited battery capability for power supplies; b) 

wireless transmission noise and quality; and c) limited processor (CPU and GPU) capability on mobile devices. Thus 

data compression for wireless networks is becoming more and more important. This research takes image as a sample 

multimedia data type to explore the necessary improvement. Traditional image transmission utilizes popular 

compression standards to reduce data size first. For example, Joint Photographic Experts Group (JPEG) uses block-

based Discrete Cosine Transform (DCT) to provide high compression rate for image coding and the transmission of 

these coded data. The block-based scheme encounters difficulties of image recovery in dynamically varying noisy 

channels in wireless [2-4]. Compressive Sensing (CS) technique was initially proposed [5, 6] to enable signals 

sampled at sub-Nyquist sample rate to be perfectly recovered. For the past decade, CS has been widely adopted in 

various signal processing areas, but it is not fully explored for applications in wireless networks. In this paper, we 

present an optimized CS based image transmission scheme over noisy Gaussian and fading channels. 

 

2. Background Research 
A. Compressive Sensing 

Compressive sensing of images allows sampling at a sub-Nyquist rate onto a random basis and could also be 

reconstructed to the original image with the condition of sparsity. 

 The N-dimensional signal x is assumed to be K-sparse with respect to some orthogonal matrix V. The ―sampling‖ 

of x is a linear transformation by using a matrix ф to produce a vector y=фx. Let ф be an M-by-N matrix where 

M<<N, so y has M elements; we call each element of y as a measurement of x. The decoder recovers the signal x from 

y with known V and ф [7].  

 

B. Image Compression Standards 
JPEG is the most popular still image compression standard. It is the first international standard for still image 

compression where the encoder and decoder are DCT-based [2]. The DCT achieves transform domain decorrelation 

on image compression [8]. JPEG2000 uses a more advanced transform—Discrete Wavelet Transform (DWT)—to 

reach a higher compression ratio. 

 

C. Network Model 
Current image compression standards, such as JPEG, are highly optimized source coding approach. However, in a 

real wireless network, it is important to take the channel conditions into consideration to optimize the overall 

performance. This is more important in mobile wireless networks as transmission errors occur in various forms and 

mobility itself has an impact on reliability of transmission. 

In this research, we first started with a Gaussian noisy channel where the original signal over a channel is subject 

to additive white Gaussian noise. One can model a channel as follows: 

Yi = Xi + Zi                                                 (1) 

Where, Yi is the channel output, Xi is the channel input, and Zi is the Gaussian channel noise. Experiments show 

that, if the channel noise level is low, JPEG coded images can be reconstructed well. However, the reconstruction of 

JPEG images becomes difficult at high noise levels, where packet loss is frequent and it will significantly downgrade 

the reconstructed image quality. Thus traditional image coding techniques may not perform well  for mobile wireless 

network applications. CS provides a promising alternative for wireless networks. This paper proposes a CS based 

image transmission system with novel quantization technique. The optimization of the coding parameters is discussed. 

The results are compared to JPEG based technique. Besides Gaussian channel, results from Rician and Rayleigh 

fading channel are also provided for a more convincing conclusion.  

 

3. Proposed Research 
A. Block Schematic of the Proposed System 

The basic block diagram of the proposed system is shown in Figure-1. It consists of a feedback loop to optimize 

the image transmission for different channel conditions.  

 

 
Figure-1. System Block Schematic Diagram 



International Journal of Modern Research in Electrical and Electronic Engineering, 2017, 1(1): 29-41 

31 

 

 

There would be a sensor to sense the channel‘s conditions. Based on the sensed channel condition, the system 

determines the optimal sampling rate (percentage of the measurements), and also, the number of bits/measurements 

to achieve optimized PSNR is selected as part of the quantizer.  

 

B. Recovery Error Calculation 

According to Candès and Terence [5] an image could be near perfectly recovered from the given vectors 

(measurements). In Candès and Terence [5] the relationship between number of measurements and the error between 

recovered and original images was discussed. However, the authors only gave a bound of the error. We would need 

to further discuss a numerical relationship between the number of measurements and recovered signal errors. 

 

C. Encoder Optimization 

In Candès and Terence [5] it is proved that an image could be recovered from sub-Nyquist samples with the help 

of CS technology. CS based encoder generates random measurements. Each measurement carries a certain amount of 

information that can be recovered independently. The more measurements received at the decoder side, the better 

reconstruction quality can be achieved [9]. We will further discuss how many sub Nyquist samples (subrate) to use to 

achieve optimal image recovery. 

Figure-2 shows the recovered images which are reconstructed using a variety percentages of measurements. We 

will see that even by using a small amount of measurements (1%) it still can roughly recover the whole image. Also, 

there is no significant difference if we use a larger amount of measurements for the recovery of images. 

 

 
Figure-2. Reconstructed image from sub-Nyquist measurements: from 

left to right: Percentage of measurements and PSNR: 1%, 16.097dB; 

5%, 22.272dB; 10%, 28.232dB; 30%, 32.997dB; 50%, 36.5dB; 90 %, 

45.159dB 

 

D. Measurement Distribution 
Besides the number of measurements, to build an efficient coding system to transmit bit stream, there is a need to 

optimize the quantizer (source coding). To optimize the quantizer, the statistical properties of the encoded data are 

investigated. Figures-3 and -4 show the distribution of measurements and the Normal distribution fit with the same 

mean and variance.   

 

 
Figure-3. PDF Comparison of Lenna CS measurements with Gaussian distributions 

 

 
Figure-4. CDF Comparison of Lenna CS measurements with Gaussian distributions 
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From the probability density function (PDF) and the cumulative distribution function (CDF), Lenna‘s CS 

measurements have the same mean and variance fit with their Gaussian distribution. We could conclude that the 

distribution of Lenna CS measurements is ―Gaussian-like distributed‖. We have tried many other images and all the 

CS measurements are distributed like Gaussian distribution. Table-1 lists the mean and standard deviation for various 

images. It can be observed that the CS measurements are all ―Gaussian like distributed‖ and the parameters (mean and 

standard deviations) are very close and we could use ―standard‖ parameters to design encoders for the CS 

measurements without significant errors.  

 
Table-1. Distributions of Image Measurements 

Image name mean standard deviation 

Lenna 2.1778 132.94 

Barbara 2.0366 129.46 

Goldhill 1.9533 122.51 

Cameraman 2.0436 133.56 

Living room 2.1013 128.77 

Peppers 2.1017 128.63 

Lake 2.3582 140.58 

Mandril 2.2965 134.52 

Pirate 1.8724 121.36 

Walkbridge 1.8657 126.37 

Aerial 2.5442 147.62 

Couple 2.2913 129.50 

Elaine 2.3562 143.90 

Tank 2.3369 135.10 

Truck 1.8414 110.46 

Moonsurface 2.2027 130.71 

Women_darkhair 1.8425 124.21 

On Average 2.1501 131.81 

standard deviation of means:0.2212 

standard deviation of standard deviations : 9.3521 

 

E. CDF Based Quantizer 
Here we propose a quantizer (source coder), which is based on the CDF of CS measurements. Suppose the 

distribution‘s pdf function is f(x), if there are i bits per sample, to get a vector of segments X, the distribution will need 

to be divided into 2
i 
quantization steps: 

Let n=2
i 
and x={x1, x2, ….., x(n-1)), where  
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That is, if we use xi to express the inverse function of cdf, 
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Also, we have a vector xc={xc1, xc2, …., xcn} as codebook for decoding  

Where  

;........; 22111 xxxxx cc                (4) 

Or, 

)
2

(1

n

i
cdfxci

                                              (5) 

For Gaussian distributed data, if mean   and variance   are known, it is easy to implement the quantizer: 

Let 
1-  be the inverse of the standard normal CDF, the quantize function is: 
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Then the total expectation of error square is 
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The total error will be equal to the sum of all the areas as shown in Figure 5.  
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Figure-5. Theoretical error vs. simulation results of Gaussian distributed 

data without channel noise 

                                                               

F. Advantages of Proposed Coder 
1) Easy to implement: It is only based on the uniform division of CDF, then it is very easy to design. 

2) Fast computing and processing: Since the distributions of measurements on different images are very close, it is 

possible to set a fixed quantizer for fast coding. 

3) It has better performance in noisy channels.  

 

G. Gaussian Distributed Sample Analysis 
In an m dB signal-noise-ratio (SNR) Gaussian channel, for Binary Phase Shifting Keying (BPSK) modulation [10]  

the bit error rate would be  

)10(*5.0 10

m

erfcBer                                           (9) 

For a k bits system, the transmitting error calculation is shown below.   

There are total of 2
k
 areas. Take 3 bits for example, if the first bit is wrong through transmission, ‗000‘ would be 

decoded as ‗100‘ and ‗001‘ would be decoded as ‗101‘.  

The total error square is  

   (10) 

 

 

An example is shown in Fig. 6.  

 

 
Figure-6. Theoretical error vs. simulation results of Gaussian distributed data 5dB 

Gaussian channel 

 

4. Experimental Results 
All the following simulation are based on the measurements from ‗Lenna‘, which is         in gray scale. 

All the modulation are binay BPSK.  

 

A. Quantizers to be Compared 
In order to analyze the efficiency of our proposed quantizer, two popular quantizers, linear quantizer and 

Lloyd_Max quantizer, are chosen for comparison.  


 







 
k

ii j
ikkkk

k

j
CDF

j
CDFBer

2

1

2

1

1

1

12 ))
2

1

2

1

2
()

2

1

2
((*error



International Journal of Modern Research in Electrical and Electronic Engineering, 2017, 1(1): 29-41 

34 

 

 

1) Linear 

The basic quantizer is the uniform scalar quantizer. A linear quantizer for image measurements has been 

discussed in Zhang, et al. [9].  

 

2) Lloyd_Max 

S. Lloyd had developed least MSE quantizer for scalar quantization [11]. He also gave the quantization table in 

Lloyd [11]. However, Lloyd_max quantizer may not be the optimum in noisy channels. 

 

B. Performance in Noisy Channel  
We tested our proposed quantizer along with the linear and Lloyd_Max quantizers in 5dB Gaussian channel and 

the results are in Figure-7. From this, we can conclude that our CDF based quantizer is better in low dB (high noise) 

channel (when SNR<=8dB) than Lloyd quantizer and linear quantizer.  

 

 
Figure-7. Comparison of 3 quantizers in 5dB Gaussian channel 

 

 
Figure-8. Comparison of 3 quantizers in  Gaussian channe with 8 bits/measurement 

 

A brief discussion: Comparison of segments and codebook training sets for Lenna with 3 bits/measurement: 

Lloyd segments: [-226.1, -127.1, -51.2, 16.6, 85.1, 167.7, 286.2]; 

Codebook:[ -284.0, -168.1, -86.05, -16.4, 49.6, 120.6, 214.7, 357.7]; 

CDF based segments: [-146.1764, -83.9351, 37.3906, 4.2867, 45.9640, 92.5084, 154.7498];  

Codebook:[-196.3728, -111.7501, -59.6442, -16.2892, 24.8626, 68.2175, 120.3235, 204.9462].  

From above data we can see that our CDF based quantizer is more centralized than Lloyd. Then in the noisy 

channel, when an error occurs in a bit, this causes less difference than Lloyd quantizer. Thus it outperforms Lloyd 

quantizer in noisy channels. Please refer Figure-8 for experimental results.  

 

C. Power Adjustments 
Consider that for mobile devices, power is very limited. We can use less bits and then give each bit more power. 

Equation (9) presents how . Bit Error Rate (BER) value is calculated for BPSK.  

If we change it to k bits encoder (suppose the original was 8 bits), the equation becomes  

)10
8

(*5.0)( 10

m

k
erfckBer 

             (11) 

Figure-9 shows the experimental results validating the theoretical values. 

 



International Journal of Modern Research in Electrical and Electronic Engineering, 2017, 1(1): 29-41 

35 

 

 

 
Figure-9. Theoretical error vs. simulation results of Gaussian distributed data in 5dB 

Gaussian channel with power adjusted 

 

Figure-10 shows the PSNR of power adjusted performance in 1-10 dB Gaussian channels. We can conclude that 

in a Guassian noisy channel, with power adjusted, there is an optimal value of bits/measurements which will achieve 

the optimized value of PSNR. Table-2 shows the optimal bits/measurements for each channel SNR.  

 

 
Figure-10. PSNR with bits power adjusted in different channel SNR 

 
Table-2. Optimized bits per measurement in different channel SNR 

SNR (dB) Optimal bits/measurement 

1 4 

2 4 

3 5 

4 5 

5 6 

6 6 

7 7 

8 8 

9 8 

10 8 

                                                 

D. Subrate vs. Less Bits 

To save bits in transmission, there are trade-offs of how to optimize the system. In CS based coding, the 

subsample rate is given by the size of an M by N matrix. We‘ve discussed the quantization code book and adjustable 

bit power, so under different channel condition, maintain a high subsample rate with less bits per code or vise versa 

may lead to different quality for reconstructed images. In this paper, we discussed two choices to further reduce the 

total bits per compressed image: 1) to reduced measurements ／samples of an image (subrate); and 2) to reduce bits/ 

measurements.  

 

 
Figure-11. Subrates vs. bits in 5dB Gaussian Channel 
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Figure-12. Subrates vs. bits in 10dB Gaussian Channel 

 

Figures-11 and -12 show the comparison of the two approaches. It shows that, from the above results, using less 

measurement is a better approach than just reduce bits/measurements. However, in the system, we implement both. 

 

E. Bit Sensitivity 
In some scenario, when the wireless channel is not solid, it will be preferable to get an overview of the image 

first, and then get more details if possible. This is the advantage of CS comparing to other compression standards, 

e.g. JPEG, in CS, each of the measurements is independent. Then we can first transmit the 1
st
 bit of each 

measurements, followed by 2
nd

, 3
rd

…In this scenario, even if the wireless communication has been terminated 

involuntarily, at the receiver side, at least it get the overview of the whole image. Figure-13 shows the reconstructed 

image from only the first 1 bit, 2 bits, …, and 8 bits of each measurement. 

 

 
Figure-13. 5db Gaussian channel, from left to right: 1bit/measurement to 4 bit/measurement; 

5bit/measurement to 8 bit/measurement PSNR: 9.3690 12.7884 15.6113 17.7277; 19.1534 

20.1976 20.6007 20.9682 

 

It is observed from Figure-13 that reconstructed images gradually getting better as more bits received, and with 

2bits/measurement, we at least get a general overview of the whole image. 

 

F. CS vs. DCT 
DCT is the core function of JPEG. The JPEG compression standard performs better for wired communication 

channels in which average bit error rates are very low. Wireless communication channels are characterized by higher 

average bit error rates, so traditional data compression methods may not perform well in wireless communication 

channel. Since DCT in JPEG is based on 8 by 8 blocks and the high compression rate also come from the precision 

of DC coefficients per block [2]. In high bit error rate wireless channel, DC coefficient and the segments between 

blocks may experience error transmission, which severely downgrade the reconstructed image quality.  

CS based compression scheme features a linear transformation with a random orthogonal matrix. Each 

measurement is independent, and can be recovered individually. Any package is equally weighted. Losing any one of 

them will not lead to dramatic downgrade of the reconstructed signal. Here, two advantages of CS over DCT will be 

discussed. 

 

1) Encoding Time 
As described in the Section II, CS measurement is obtained by vector y=фx. Thus CS encoding is a very simple 

matrix operation. However, JPEG have many steps on encoding, including block splitting, DCT, Entropy coding, 

Zigzag. Thus JPEG will take much more time at encoder side than CS. Refer to figure-14, for ‗Lenna‘, CS encoder 

took about 0.01-0.04s running in a Dell Precision laptop, and JPEG took about 0.5 seconds, 10-50 times more than 

CS. 
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Figure-14. Encoding Time, JPEG vs. CS 

 

Thus, CS may be implemented on platforms which requires faster encoding, e.g., camera, satellite, cellphones, 

and etc.  

 

2) Error Tolerance  

Since JPEG is based on 8 by 8 block splitting, during the decoding process, how to decide block splitting is 

critical. After noisy wireless channel, the marks of block splitting may get error thus the recovered image may got 

altered like Figure-15 below: 

 

 
Figure-15. JPEG after noisy Gaussian Channel, 10-7 db 

 

For CS, as shown in Figure-13, the error to each measurement would not further influence other measurements 

and thus CS would have better error tolerance performance at high bit error rate wireless channels. 

 

G. Performance over Multipath Fading Channel 
In previous sections, a simple Gaussian noisy channel was chosen to represent the network condition, while more 

complicated network models can test our proposed method in expanded application conditions. 

 

1) Two Types of Fading Channels 
Usually, multipath Rician Fading Channel is used to model multipath fading channel, which have direct line-of-

sight path from transmitter to receiver and multipath Rayleigh Fading Channel is used to model multipath fading 

channel which have one or more major reflected paths from transmitter to receiver. Please refer to Figure-16. 

 

 
Figure-16. Fading channels of direct path and reflected paths 

        Source: https://www.mathworks.com/help/comm/ug/fading-channels.html 

 

2） Character of Fading Channel 

Comparing to additive white Gaussian noise (AWGN) channel, fading channels have much higher BER: 

For Rayleigh Fading, 
NoEb

NoEb
Pb

/2

/
1

2

1


             (12) 

For Rican Channel, the BER depends on the k factor, which is the ratio between the power in the direct path and 

the power in the other scattered paths. Theoretical BER for BPSK over Rician Fading Channel with AWGN noise is 
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given by the following equation: 

Pb =
1

2
erfc

K *Eb / No

K +Eb / No
                               (13) 

Please refer to Figure-17 for the BER. 

 

 
Figure-17. BER for Rayleigh Channel and Rician Channel 

 

3) Wireless Transmission Strategy in Fading Channels 
Given a fading channel, our proposed system has following controllable factors which can impact the results: 

  i: subrate 

  ii: bits per measurement and power adjustment 

  iii: quantizer 

  iv: block size 

Similar to the discussion on AWGN, optimization is considered among the best choices of those parameters. 

a) Best subrate to be used in fading channel: 

  (1) The following images in Figure-18 show at Rayleigh Channel with SNR=10dB, block size=32, using 8bits/ 

measurement, the recovered image at subrate=0.01,0.06, 0.11,0.16,0.3,0.5,0.7 and 1 from left to right. 

  We can conclude that there is no significant difference when subrate>0.1. The Simulation results can validate 

this conclusion. 

 

 
Figure-18. Reconstructed images under Rayleigh Channel 

 

 (2) With same block size, quantizater, bits per measurement, and various subrate under various channel SNR 

condition, the reconstructed PSNR for images Lenna, Goldhill, and Barbara, are illustrated in Figures -19, -20, and -

21, respectively.  

 

 
Figure-19. PSNR for reconstructed Lenna over Rayleigh Channel 
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Figure-20. PSNR for reconstructed Goldhill over Rayleigh Channel 

       

 

 
Figure-21. PSNR for reconstructed Barbara over Rayleigh Channel 

 

From above simulation results, we can conclude that in Rayleigh Channel, the optimized subrate is 0.06-0.11. 

(3) Same experiment is conducted for Rician channel. Simulation results of optimized subrate are presented in 

Figures -22 through -24. 

 

 
Figure-22. PSNR for reconstructed Lenna over Rician channel (K=1) 

 

 
Figure-23. PSNR for reconstructed Goldhill over Rician channel (K=3) 
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Figure-24. PSNR for reconstructed Lenna over Rician channel (K=5) 

                                

From experimental results, the optimized subrates in fading channel are 0.06 (low SNR channel) and 0.11 (high 

SNR channel). 

b) Optimized bits per measurement: 

 

 
Figure-25. PSNR after adjusted power per bit in Rayleigh Channel 

                                

Similar to Table-2, refer to Figure-25, in Fading Channel, we also tabulate the optimized bits/ measurement in 

Rayleigh Channel in Table-3. 

 
Table-3. Optimized Bits per Measurement in Different Rician Channel Snr 

SNR (dB) Optimal bits/measurement 

1 2 
2 2 

3 2 

4 2 

5 3 

6 3 

7 3 

8 3 

9 3 

10 4 

11 4 

12 4 

13 5 

                                               

5. Conclusion 
In this paper, we investigate the CS based image compression and transmission over wireless channel. We 

introduced a CDF based quantizer and showed that it performs better than Lloyd and linear quantizer in noisy channel. 

Then we further discussed optimal image transmission through noisy channel by using different bits/measurement and 

subrates according to the channel‘s condition. We finally compared CS to JPEG and found that CS performed better. 

Not only Gaussian channel, but also Rayleigh and Rician fading channel conditions are considered in optimizing the 
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parameters for CS based scheme. For further research, we would develop more solid mathematical based research on 

this issue, and also explore compressive sensing based video compression and transmission via noisy channel. 
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