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Tit-For-Tat Strategy which introduced by Robert Axelrod is a highly effective strategy in the iterated 

Prisoner‟s Dilemma. Most game theory research on the prisoner's dilemma has focused on two players, 

but it is possible to create a Prisoner‟s Dilemma involving three or even more players. In this Paper, we 

discuss a prisoner's dilemma game involving three players which is infinitely iterated “iterated three 

player Prisoner‟s Dilemma game (I3PD)”. The all possible strategies which depend on the previous 

outcomes are represented by finite state of automata. Four different new strategies are presented in order 

to discuss the general Tit-For-Tat concept in details, and we the compute the all payoff values for these 

strategies with the strategy ALLC and the strategy ALLD. 
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1. Introduction 
The Prisoner's Dilemma (PD) is a traditional game model for the study of decision making and self- interest. It is 

only one of many illustrative examples of the logical reasoning and complex decisions involved in game theory. In 

order to make the best choice, each player would have to know what would the other do, but the structure of 

prisoner's dilemma prohibits players from having such knowledge, unless the situation or the game is repeated. When 

understood properly, this dilemma can multiply into hundreds of other more complex dilemmas. The mechanisms 

that drive the prisoner's dilemma are the same as those that are faced by marketers, military strategists, poker players, 

and many other types of competitors. A plethora of disciplines have studied the game, including artificial 

intelligence, biology, business, mathematics, philosophy, sociology, and political science [1, 2]. 

In the Prisoner's Dilemma game (PD) two players are faced with a choice, they can either cooperate or defect. 

Each player is awarded points (called payoff) depending on the choice they made compared to the choice of the 

opponent. Each player‟s decision must be made without knowledge of the other player‟s next move. There can be no 

prior agreement between the players concerning the game. If both players cooperate they both receive a reward, R 

points. If both players defect they both receive a punishment, P points. If one player defects and the other cooperate, 

the defector receives a reward, T points, the temptation to defect, while the player who cooperates is punished with 

the sucker‟s payoff, S points. Rapoport and Chammah [3]. We can represent the payoff matrix as the following: 

 

 
 

Where, T > R > P > S should be satisfied. 

Assume a rational player is faced with playing a single game (known as one shot) of the Prisoner's Dilemma 

described above and that the player is trying to maximize his/her reward. If the player thinks that his/her opponent 

will cooperate, the player will defect to receive a reward, T points as opposed to the cooperation which would have 

earned him/her only, R points. However if the player thinks that his/her opponent will defect, the rational choice is to 

also defect and receive, P points rather than cooperate and receive the sucker‟s payoff of,  S points. Therefore the 

rational decision is to always defect. But assuming the other player is also rational he/she will come to the same 

conclusion as the first player. Thus both players will always defect, earning rewards of, P points rather than the, R 

points that mutual cooperation could have yielded. Game theory has proved that always defecting is the dominant 

strategy for this game (the Nash Equilibrium). This holds true as long as the payoffs follow the relationship,              

T > R > P > S, and the gain from mutual cooperation is greater than the average score for defecting and cooperating, 

R > (S + T)/ 2. The dilemma here is that if both players defect, they both score worse than if both had cooperated [4].         

The Iterated Prisoner's Dilemma (IPD) is an interesting variant of the above game in which two players play 

repeated games of the Prisoner's Dilemma against each other. In the above discussion of the Prisoner's Dilemma the 

dominant mutual defection strategy relies on the fact that it is a one-shot game, with no future. The key to the IPD is 

that the two players may play each other again; this allows the players to develop strategies based on previous game 

interactions [5]. Therefore a player‟s move now may affect how his/her opponent behaves in the future and thus 

affect the player‟s future payoffs. This removes the single dominant strategy of mutual defection as players use more 

complex strategies dependent on game histories in order to maximize the payoffs they receive. In fact, under the 

correct circumstances mutual cooperation can emerge. The length of the (IPD) (i.e. the number of repetitions of the 

Prisoner's Dilemma played) must not be known to either player, if it was the last iteration would become a one-shot 

play of the Prisoner's Dilemma and as the players know they would not play each other again, both players would 

defect [6]. 

 

2. Iterated Three Prisoner’s Dilemma Game (I3PD)         
Most game theory research on the prisoner's dilemma has focused on two player games. But it is possible to 

create a prisoner's dilemma game involving three or even more players. The strategies from the two player game do 

not necessarily extend to a three person game in a natural way. We consider a simple game with three players. Each 

player has two pure strategies C and D. Each round in the game leads one of the eight possible outcomes CCC, CCD, 

CDC, CDD, DCC, DCD, DDC or DDD, where the first position represents the player under consideration, the 

second and the third positions represent the opponents. For example, DCC represents the payoff to a defecting player 

if his both opponents cooperate. And CCD represents the payoff to a cooperating player if one of his two opponents 

cooperates and the other opponent defects [7]. Since we assume a symmetric game matrix, YCD could be written as 

YDC, where Y may be C or D. These outcomes are specified by the player‟s payoff R, K, S, T, L or P which can be 

numbered by                respectively. We impose three rules about the payoffs for the three player PD game:  

      (i) Defection should be the dominant choice for each player. In other words, it should always better for a player 

to defect, regardless what the opponents do. This rule gives three constraints:  

                (1) DCC > CCC, (T > R), (both opponents cooperate). 

                (2) DDD > CDD, (P > S), (both opponents defect). 

                (3) DCD > CCD, (L > K), (one opponent cooperates, one defects). 

      (ii) A player should always be better off if more of his opponents choose to cooperate. 

                (1) DCC > DCD > DDD, (T > L > P).  

                (2) CCC > CCD > CDD, (R > K > S). 

      (iii) If one player's choice is fixed, then the other two players should be left in a two player prisoner's dilemma. 

This rule gives the following constraints:  

                (1) CCD > DDD, (K > P). 

                (2) CCC > DCD, (R > L). 

    (1) 
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Finally, suppose the payoff matrix of three player PD game is 

                                                                       
Where, T > R > L > K > P > S.        

Assume a rational player under consideration is faced with playing a single game (known as one shot) of the 

three player Prisoner's Dilemma described above and that the player is trying to maximize his/her reward. The three 

players will always defect, earning rewards of, P, points rather than the, R, points that cooperation could have 

yielded. We can say that defection is the dominant strategy for the 3PD. This holds true as long as the payoffs follow 

the relationship,  

T > R > L > K > P > S [7].        

Consider now the iterated game which consists of repeating the simple game infinitely often, i.e. with probability 

1. In the above discussion of the three Prisoner's Dilemma the dominant defection strategy relies on the fact that it is 

a one-shot game, with no future. The key to the (I3PD) is that the three players may play each other again; this 

allows the players to develop strategies based on the previous game interactions. Therefore a player‟s move now may 

affect how his/her opponents behave in the future and thus affect the player‟s future payoffs. This removes the single 

dominant strategy of defection as the players use more complex strategies dependent on game histories in order to 

maximize the payoffs they receive. We assume that the three players take their decision according to the last choice 

of the opponents, only the last choice, by this assumption we call our game, an iterated three prisoner‟s dilemma with 

memory one. The length of the I3PD (i.e. the number of repetitions of the three Prisoner's Dilemma played) must not 

be known to the players, unless the all players would defect [8]. 

In the I3PD, each player has two choices either defect or cooperate after each outcome of the six outcomes T, R, 

L, K, P, S, so the total number of strategies can be composed as    = 64 different strategies. The 64 possible 

strategies can be labeled by (   ,       ,   ,   ,   ) of zeroes and ones. Here    is 1 if the player plays C and 0 if 

he/she plays D after outcome i (i=1,2,3,4,5,6). For convenience, we label these rules by   , where j ranges from 0 to 

63 and it is the integer given by (in binary notation):                   [9, 10]. 

We can describe our strategies by finite state automata, more precisely, two state automata only. Each of the 

three players is now an automaton which can be in one of two states through any given round of the iterated 3PD). 

These states are corresponding to the two possible moves C and D. The state of the player in the following round 

depends on the present state and on the opponent‟s move. Hence each such automaton is specified by a graph with 

two nodes C and D and three oriented edge issuing from each node, one labeled C and the other D, which specify the 

transition from the current state to the state in the next round [8, 9]. For examples, the transition rule (1, 0, 0, 1, 1, 0) 

represents the strategy     represented in Fig (1). 

 

 
Fig-1. 

 

How one rule fares against another depends, of course, on the initial condition of this rule [9]. Let us consider, 

for instance, an automaton with rule     (a retaliator never relents after defection from any one of his/her opponents 

(2) 
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unless they both cooperate again) against the two automata     (a retaliator but is more forgiving than    ) and     

(slow to anger than his/her opponents and slow to forgive than     ): 
a) If all three automata start with a C, they will keep playing C forever. The sequence looks as follows: 

    C C C C C C C C C… 

    C C C C C C C C C… 

    C C C C C C C C C… 

          

b) If all three automata start with a D, the sequence looks as follows: 

    D D D D D D D D D… 

    D D D D D D D D D… 

    D D D D D D D D D… 

          

c) If                start with a C while      starts with a D, the sequence looks as follows: 

    C D D D D D D D D… 

    C D C D D D D D D… 

    D C D D D D D D D… 

          

d) If               start with a C while      starts with a D, the sequence looks as follows: 

    C D C D C D C D C… 

    D C D C D C D C D… 

    C C C C C C C C C… 

e) If all three automata start with a D, the sequence looks as follows: 

    C D D D D D D D D… 

    D C D D D D D D D… 

    D D D D D D D D D… 

f) If               start with a C while      starts with a D, the sequence looks as follows: 

    D C D C D C D C D… 

    C D C D C D C D C… 

    C C C C C C C C C… 

g) If all three automata start with a D, the sequence looks as follows: 

    D D D D D D D D D… 

    C D D D D D D D D… 

    D D D D D D D D D… 

h) If all three automata start with a D, the sequence looks as follows: 

    D D D D D D D D D… 

    D C D D D D D D D… 

    C D D D D D D D D… 

The payoff in the infinitely repeated game is simply the average payoff per round. In our example, for the player 

under consideration who is using the transition rule   , the payoff is R in case (a), (K+T)/2 in cases (d) and (f), and P 

in cases (b), (c), (e), (g) and (h). This directly means that for the player who is using the transition rule     the payoff 

is R in case (a), (T+T)/2 in cases (d) and (f), and P in cases (b), (c), (e), (g) and (h). Finally for the player using the 

transition rule    , the payoff is R in case (a), (K+T)/2 in cases (d) and (f), and P in cases (b), (c), (e), (g) and (h). We 

note that the payoffs are independent of the initial condition, i.e. of the moves of the players in the first round. 

We can use a more direct approach [9] where the eight possible initial conditions lead (in unperturbed runs) to 

three possible regimes A, B and E, where A denotes the run where the three players use C, while B is the run where 

the    -player always play C and the other two opponents always one of them plays C and the other plays D, finally 

E denotes the run where the three players use D. Suppose we are in a regime A, rare perturbation causes one of the 

three players to play D; what follows either scenario (f), (d) or (c), and hence leads after few steps with probability 

2/3 to regime B and with probability 1/3 to regime E. Suppose now that a perturbation occurs in regime B, it leads 

with probability 1/3 to regime A and with probability 2/3 to regime E. Suppose now that a perturbation occurs in 

regime E, it leads always to regime E. Hence, the corresponding transition matrix is  

(

 
 

 

 

 
 

 
 

 

 

   

) 

The corresponding stationary distribution vector is (0,0,1). This means that, an iterated game between      
            will be always in the regime E. The    -player receives an average payoff, P per round. This argument, 

repeated for each of the 64 x 64 x 64 = 262144 entries, yields a 64 payoff matrix each of them is 64x64 payoff 

matrix. 

It is clear that, the previous manner for calculations takes a long time. Therefore, it is more practical to 

computerize them using any programming language. In order to achieve this; we designed an algorithm and 

implemented it using the Java programming language to make these calculations, and the designed algorithm is 

presented in the Appendix section. That code takes the three strategies corresponding to the three players as an input 

and gives us the regimes and their transition matrix as an output. For the player who used the strategy S52 against the 

two players using S0 (ALL D) and S63 (ALL C), the output would be the only two regimes K and L such that their 

transition matrix is 

(3) 
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With a stationary distribution vector ( 
 

 
 , 

 

 
 ). It means that the player who is using     receives payoff, 

     

 
, the 

player using    receives payoff, 
     

 
 and the player who is using     receives payoff, 

     

 
. 

 

 Examples: 

In table 1, we present the payoff values for the three players considering that they play using either    ,     

or    . 
 

Table-1. 

 
 

3. General Tit-For-Tat Strategy 
Although there is no one best strategy for all circumstances, one that works extremely well over a wide variety of 

environments is a simple tit-for-tat strategy. In this strategy, one begins by cooperating and then mimics the other 

player's moves. Tit-for-Tat is "nice" in that it is willing to cooperate and it does not bear a grudge. It also cannot be 

exploited because any "defection" from cooperation will be returned. If each of the two players uses a Tit-For-Tat 

strategy, he/she will cooperate on the first round. If he/she discovers that the second player has defected, he/she will 

defect on the next round. If, after he/she realizes that the second player cooperated again, he/she becomes ready to 

cooperate, a Tit-For-Tat strategy is ready to begin cooperating [11]. The power of Tit-For-Tat in encouraging 

cooperation in unusual places has been explored by Robert Axelrod in The Evolution of Cooperation. What does Tit-

For-Tat mean in the (I3PD)? Should the player defect if either the opponents defected on the previous round or only 

if both opponents defected? Is either of the strategies nearly as effective in the (I3PD) game as tit-for-tat is in the 

(I2PD) game? 

To answer the previous questions, we will present four different strategies in which we can discuss the Tit-For-

Tat concept in details. These four strategies are called TFT1 (   ), TFT2 (   ), TFT3 (   ) and TFT4 (   ) 

presented by the automata in Fig (1). The player who uses the TFT1 strategy plays the iterated prisoner‟s dilemma 

game under the condition that “If the two opponents have chosen the same choice, on the previous move, then he/she 

makes the choice which they did, else he/she stays on his/her choice”. The player who uses the TFT2 strategy plays 

the iterated prisoners' dilemma game under the condition that “If the two opponents have chosen the same choice, on 

the previous move, then he/she makes the choice which they did, else he/she shifts his/her choice”.                                 

The player who uses the TFT3 strategy plays the iterated prisoners' dilemma game under the condition that “If the 

two opponents have chosen the same choice, on the previous move, then he/she makes the choice which they did, 

else he/she plays C always”. The player who uses the TFT4 strategy plays the iterated prisoners' dilemma game 

under the condition that “If the two opponents have chosen the same choice, on the previous move, then he/she 

makes the choice which they did, else he/she plays D always”. 

 

4. Tit-For-Tat, ALLC and ALLD Competition 
Consider that the three players will choose one of the six strategies TFT1, TFT2, TFT3, TFT4, ALLC and 

ALLD, and we are going to calculate the payoff values and write it down in table form such that (in each table) the 

third player is using a fixed strategy, each row denotes the 1
st
 player strategy, each column denotes the 2

nd
 player 

strategy and each 6-tuble (V1, V2, V3, V4, V5, V6) is the stochastic vector for the 1
st
 player asserting that it has a 

payoff value = 
                                         

                         
. 

 

                        

 

 

 

 

 

 

(4) 

http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FEvolution-Cooperation-Robert-Axelrod%2Fdp%2F0465005640%2Fsr%3D1-1%2Fqid%3D1171910125%3Fie%3DUTF8%26s%3Dbooks&tag=ingrimayne-20&linkCode=ur2&camp=1789&creative=9325
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Table-2. The payoff values of Si against Sj  and Sk, where i.j = 52,38,54,36,63,0 ,k=52 

 
 

Table-3. The payoff values of Si against Sj  and Sk, where i.j = 52,38,54,36,63,0 ,k=38 

 
                     

Table-4. The payoff values of Si against Sj  and Sk, where i.j = 52,38,54,36,63,0 ,k=54 

 
 

Table-5. The payoff values of Si against Sj  and Sk, where i.j = 52,38,54,36,63,0 ,k=36 

 
 

Table-6. The payoff values of Si against Sj  and Sk, where i.j = 52,38,54,36,63,0 ,k=0 

 
 

Table-7. The payoff values of Si against Sj  and Sk, where i.j = 52,38,54,36,63,0 ,k=63 

 
 

5. Results 
From the previous two sections, we concluded that: there is no dominant strategy. TFT3 is more relenting than 

TFT1 and TFT3 more forgiving than TFT2. TFT1 will Defect forever like    (ALLD) if his two opponents are   , 

one of his opponents is    after being on the state D or, if his two opponents are     &    after being on the state D. 

TFT1 is slow to anger and slow to forgive. TFT1 will Cooperate forever like     (ALLC) if his two opponents are 

   , one of his opponents is     after being on the state C or his two opponents are     &    after being on the state 



World Scientific Research, 2015, 2(1): 1-9 

 

 

 

 

7 

 

C. TFT2 will Defect forever like    (ALLD) if his two opponents are   . TFT-2 is fast to anger and fast to forgive. 

TFT-2 will cooperate forever like     (ALLC) if his two opponents are    . TFT-2 will hesitate between Defection 

and Cooperation if his two opponents are     &   . TFT3 will defect forever like    (ALLD) if his two opponents 

are   . TFT3 is slow to anger and fast to forgive. TFT-3 will cooperate forever like     (ALLC) if at least one of his 

two opponents is    . TFT3 tends to cooperate more than Defection. TFT4 will cooperate forever like     (ALLC) if 

his two opponents are    . TFT4 is fast to anger and slow to forgive. TFT4 will defect forever like    (ALLD) if at 

least one of his two opponents is   . TFT4 tends to defect more than Cooperation. 
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Appendix 

    The following is the designed algorithm used for the calculations of the (I3PD) game: 

Constant Integer ITERATIONS = 9; 

Declare Integer row1[ITERATIONS], row2[ITERATIONS], row3[ITERATIONS]; 

Declare Character w [ITERATIONS]; 

FOR player1 = 0 to 63 do 

  FOR player2 = 0 to 63 do 

               FOR player3 = 0 to 63 do    

   runGame(player1, player2, player3) 

ENDFOR 

              ENDFOR 

ENDFOR 

procedure runGame(player1, player2, player3) 

Declare Integer x[6] = calculate_binary_of  (player1);      

Declare Integer y[6] = calculate_binary_of  (player2); 

Declare Integer z[6] = calculate_binary_of  (player3); 

Declare List of Character[ ] resultsOfBloks; 

FOR count = 0 to 8 do 

initialize_rows(count); 

  FOR q = 0 to ITERATIONS – 1 do 

excute_core_game (q);  

  ENDFOR 

  FOR i = 0 to ITERATIONS do       

construct_result_row (i);  

ENDFOR 

Declare Character blockOfResult[ ] = calculateRepeatedSequence() 

resultsOfBloks.add(blockOfResult); 

 ENDFOR      

 Declare Integer transitionMatrix[][] =  

                                       transferToTransitionMatrix(x, y, z, resultsOfBloks);\ 

end procedure 

function calculateRepeatedSequence( ) 

 Declare Integer  repeatIndex = 0; 

 Declare Integer  startindex = 0; 

 Declare Integer  endIndex = 0; 

 Declare Boolean found = false;  

 FOR i = 0 to q-1 
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  FOR k = i+1 to q-1 

   IF (w[i] = w[k]) { 

    found = true 

    startindex = i 

    endIndex = k - 1 

    “Leave the loop” 

   ENDIF 

  ENDFOR 

  IF (found = true) 

   “Leave the loop” 

  ENDIF 

 ENDFOR  

 Declare Character elements[endIndex - startindex + 1] 

 FOR i = startindex to endIndex-1 

  elements[i-startindex] = w[i] 

  repeatIndex= repeatIndex+1 

 ENDFOR 

 elements[endIndex - startindex] = w[endIndex];   

 return elements; 

End function 

procedure transferToTransitionMatrix (x, y, z, resultsOfBloks) 

 LOOP resultsOfBloks 

Declare List of Character[ ] newResults 

 For i = 0 to blokResult.size-1 

  Declare Integer entity[ ] = elements.get(blokResult[i]); 

  runNewInitials(entity, newResults); // play game 3 times with 3 

 ENDFOR 

LOOP newResults 

int blockResultPosition = getBlockPosition(resultsOfBloks, blokResult); 

int newResultPosition = getBlockPosition(resultsOfBloks, newResult); 

transitionMatrix[blockResultPosition][newResultPosition] += 1; 

ENDLOOP 

             ENDLOOP 

End procedure 

Procedure runNewInitials(Integer[ ] entity, List of Character[] newResults) 

 Integer newEntity1[ ] = swapDigitOfEntity(entity, 0); 

 Integer newEntity2[ ] = swapDigitOfEntity(entity, 1); 

 Integer newEntity3[ ] = swapDigitOfEntity(entity, 2); 

 newResults.add(excute_core_game(newEntity1)); 

 newResults.add(excute_core_game(newEntity2)); 

newResults.add(excute_core_game(newEntity3)); 

End procedure  

Function getBlockPosition(List of Character[] resultsOfBloks, Character[] block) 

LOOP resultsOfBloks 

 IF block = resultsOfBlok 

  return i 

 ENDIF 

ENDFOR 

return -1; 

End function. 

 

Where swap Digit of Entity just replaces 0 by 1 and vice versa, the function initialize_rows (count) is as the 

following: 

f count =  Set row1[0] =  Set row2[0] = row3[0] = 

0 1 1 1 

1 0 0 0 

2 1 1 0 

3 1 0 1 

4 1 0 0 

5 0 1 1 

6 0 1 0 

7 0 0 1 

 

,the function excute_core_game(q) is as the following: 

If row1[q] = row2[q] = row3[q] = Set row1[q+1] = row2[q+1] = row3[q+1] = 

0 0 0 x[5] y[5] z[5] 

0 0 1 x[4] y[4] z[2] 
     Continue 
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0 1 0 x[4] y[2] z[4] 

0 1 1 x[3] y[1] z[1] 

1 0 0 x[2] y[4] z[4] 

1 0 1 x[1] y[3] z[1] 

1 1 0 x[1] y[1] z[3] 

1 1 1 x[0] y[0] z[0] 

 

and construct_result_row(i) is as the following: 

If row1[q] = row2[q] = row3[q] = Set w[q] =  

0 0 0 „P‟ 

0 0 1 „L‟ 

0 1 0 „l‟ 

0 1 1 „T‟ 

1 0 0 „S‟ 

1 0 1 „K‟ 

1 1 0 „k‟ 

1 1 1 „R‟ 
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