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Abstract 

We study the numerical approximation in space of the solution of Black-Schole’s equation with volatile 

portfolio risk measure. Making use of the 
2L  theorem of solvability in Sobolev spaces, the solution is 

approximated in space, with finite –difference methods.   
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1. Introduction 
The numerical methods and possible approximation results are strongly linked to the theory on the solvability of 

the PDEs. In the present paper, we make use of the 
2L  theory of solvability of linear PDEs in Sobolev spaces.The 

finite difference method for approximating PDE is a well developed area ,which has been extensively researched 

since the first half of the last century. We refer to Thomee [1] for a brief summary of the method’s history, and also 

for the references of the seminal work by R. Courant, K. O. Friedrichs and H. Lewy, and of further major 

contributions by other authors. In particular, a general approach of the numerical approximation, making use of finite 

difference, of the Cauchy problem for a multidimensional linear parabolic PDE of order 2,M  with bounded time 

and space-dependent coefficients, can be found in Thomee [1]. This approach is pursued under a strong setting, 

where the PDE problem has a classical solution. Also Zhao and Zhang [2] discussed the primal-dual large-update 

interior-point algorithm for semi-definite optimization based on a new kernel function. 

 The finite difference method was also early applied to financial option pricing, the pioneering work being due to 

M. Brennan and E. S. Schwartz in 1978, and was, since then, widely researched in the context of the financial 

application, and extensively used by practitioners. For the references of the original publications and further major 

research, we refer to the review paper by Broadie and Detemple [3]. Most studies concerning the numerical 

approximation of PDE problems in Finance consider the particular case where the PDE coefficients are constant, see, 

e.g., [4-7]. This occurs, namely, in option pricing under the Black-Scholes model (in one or several dimensions), 

when the the asset price vector’s drift and volatility are taken constant. The simpler PDE, with constant coefficients, 

is obtained after a standard change of variables, see, e.g., [8] for the one-dimensional case, and Goncalves and 

Grossinho [9] for the multidimensional case. The PDEs arising from the generalized option pricing model pose three 

challenges to the numerical approximation: the degeneracy of the equation, the coefficients being time and space-

dependent and also unbounded in the space variables. In the present article, we assume that the equation is non 

degenerate and the coefficients are bounded, and deal only with the coefficient time and space-dependency.This 

paper studied the equation below on the strip   dT R0,  ,with T a positive constant, we study the approximation 

properties of the numerical scheme of the PDE  

       d

hhhth ZinxgxuhinfuuL =0,,0= Q  

where    Th 0,=Q  
d

hZ , with   hh gandfandT ,0,  are functions such that   RQ hfh :  and 

R.d

hh Zg :
 

The work is based heavily on the PhD thesis and a working paper by Goncalves and Grossinho [9]. We deal with 

the PDE nonlinearity by treating the nonlinear term as if it was a free data, imposing regularity to it, and then using 

linear theory to derive the results.  

 

2. The Model 
Transaction costs as well as the volatile portfolio risk depend on the time –lag between two consecutive 

transactions. Minimizing their sum yields the optimal length of the hedge interval –time lag . This leads to a fully 

nonlinear parabolic PDE. If transaction costs are taken into account perfect replication of the contingent claim is no 

longer possible. Modeling the short rate )(= trr  by a solution to a one factor stochastic differential equation,  

    ,,,= dwtsdttsdS    (2.1) 

 where  dttS,  represent a trend or drift of the process and ),( tS  represents volatility part of the process, the 

risk adjusted Black-Scholes equation can be viewed as an equation with a variable volatility coefficient  

 
  0,=1
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, 2
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1
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V SsSt 







 


 (2.2) 

 where ),(2 ts  depends on a solution ),(= tsVV  and 
3

1
2

2
3= 












RC
, since  

    .),(1(=, 3

1

222 tSVSts S   

Incorporating both transaction costs and risk arising from a volatile portfolio into Equation (2.2) we have the change 

in the value of portfolio to become.  

 
  ,=

2

, 22
2

SrrrVVrSVS
ts

V VPTCSst 


(2.3) 

where
t

SC
rTC



 1

2
=




is the transaction costs measure, tSRrVp 224

2

1
=  is the volatile portfolio risk 

measure and Vs
2=  .Minimizing the total risk with respect to the time lag t  yields as in Osu and Olunkwa [10];  

  .
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rr SVPTCt 

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
 


 

For simplicity of solution and without loss of generality, we choose the minimized risk as 

   vAsrrmin sVPTCt
22

2

3

=  ,                  (2.4a) 
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 They change in the value of the portfolio after minimizing the total risk with respect to time lag is given as  
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 which can also be written as  
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The left hand of Equation 2.5 is the usually Black-Sholes formula. Setting  

      )(=,=,,= xgehandteuyxVeS xxx
 

we have Equation (4) becoming;  
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which implies;  
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, then Equation(5) reduces to  
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 which is equivalent to that in Maraiam, et al. [11]. We further assume that there is no accumulated interest on the 

portfolio. Hence 0=r  and the new portfolio becomes  
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     dinxgxu R=,0  

Equation (2.10) can be written as  
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   dingxu R=,0  

Let 






























2

2

2

2

,==,=
x

u

x

u
AFfand

t

u
u

x

u
k

x

u
kLu t   

 kkwhere =  

Equation 2.11 can be written as  
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t inxgxuinfuLu RQ =0,,0= (2.12) 

 with 
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    .),(,=,
.

.

..

2
.

x
xtk

xx
xtkxtL









                      (2.13) 

 

3. Numerical Approximations in Space: The Discrete Framework 
In this section ,we discretize in space problem (2.12),with the use of a finite-difference scheme .By considering 

suitable discrete function space ,we can show that the discrete framework we set is a particular case of the general 

framework, therefore holding an existence and uniqueness result for the solution of the discretized problem . We 

define the 
dongridh R ,with  0,1h   

.2,1,0,==:= ,

1= 







  iii

d

i

dd

h nnehxxZ R  

Denote  

    )),(,(=,= 1 xtuhextuhxtuu i  
 

and  

      ,,,=,= 1

ihextuxtuhxtuu  
 

the forward and backward difference quotients in space ,respectively. Define the discrete operator  

      ),(,=, xtkxtkxtLh  

We consider the discrete problem  

      ,=0,,0= d

hhhth ZinxgxuhinfuuL Q  (3.1) 

 where    Th 0,=Q  
d

hZ , with   hh gandfandT ,0,  are functions such that   RQ hfh :  and 

.: Rd

hh Zg  

 Consider function .: Rd

hZv  We introduce the 0-order discrete Sobolev space  

 ,<::= 0,2
0,2 

l

d

h vZvl R  

where the norm 0,2l
v  is defined by  

1/2

2
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




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d
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Zx

l
hxvv  

Define the inner product  

      ,=, 0,2
d

d
h

Zx

l hxwxvuv 


 

for any 
0,2, lwv  ,which induces the above norm. 

It could be checked trivially that   0,2, l  and ,. 0,2l
 as defined above ,are an inner product and norm ,respectively 

.We show next the good structure of .0,2l  

 Proposition 3.1 .The function space ,0,2l is a Hilbert space. 

 Proof: To prove that 
0,2l ,is a Hilbert space we have that the inner product space 

0,2l  is complete, ie ,that any 

Cauchy sequence in 
0,2l  is convergent in the space norm. 

 Let  nv  be a Cauchy sequence in
0,2l  ,ie ,for all 0> exists N such that for Nnm >,   

  (3.2).<=
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Therefore,for every 
d

hZx   

  .>,,<)( 22
Nnmforhxvxv d

nm 
              

(3.3) 

Let us fix 0= xx . From (3.3),we see that     ,.., 0201 xvxv  is a Cauchy sequence of real numbers ,therefore 

convergent.Write    00 xvxvm  .Using these limits ,we define   d

hZxeachforxvv ,= . 

Let B be a ball in 
d

hZ .From (??) ,for Nnm >,   

  .<)( 22
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Letting n , for Nm >   

  22
)( 



d

nm

Bx

hxvxv  

Letting now the diameter of B  go to Nmfor >,   

  22
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d
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 Inequalities (3.4) implies that .0,2lvvm   Finally ,(3.4) also implies that vvm  ,and the result is proved . 

 For functions .: Rd

hZv  We introduce also the discrete Sobolev space of order 1  

 ,<:.:= 1,2
1,2 

l

d

h vZvl R  

With the norm 1,2l
v  defined by  

1/2
2

0,2

2

0,21,2 = 




  

lll
vvv  

Let us endow this function space with the inner product, generating the above norm,  

      ,,,=, 0,20,21,2 lll wvwvwv    

Where ., 1,2linfunctionsanyarewv  

To show that that the discrete framework we set a particular case of the general framework ,we begin by 

checking that 
1,2l  is a reflexive space and separable Banach space,continousely and densely embedded into the 

Hilbert space 
1,2l . Following the same steps as in proof of proposition 1,it could be easily proved that

1,2l  is a 

complete inner product space .Therefore 
1,2l  is reflexive.We state that 

1,2l  is separable. 

 Proposition 3.2: The function space 
1,2l  is separable, See, e.g., [9] for prove. 

 We can now check that 
1,2l  is continuously and densely embedded in 

1,2l  .The continuity follows immediately from  
1,2

1,20,2 lvallforvv
ll

  

For the denseness ,we prove the following result: 

Proposition 3.3: The function space 
1,2l  is densely embedded in 

0,2l . 

Proof: We want to prove that
0,21,2 = ll . Let us take an arbitrary function .0,2lv Let B  be a ball in 

d

hZ .we 

consider the function w  such that  

 
 



 

.0,

,
=

otherwise

Bxxv
xw  

This function belong to obviously to 
1,2l  .Furthermore ,for any given 0>   

,<1,2 
l

wv  

If the diameter of B is chosen sufficiently large .the result is proved. 

Now ,we change point of view and consider the function RQ )(: hw  as functions in  T0,  with values in 
R ,defined by     d

hZxxtwtw :,= ,for all  Tt 0, .For these functions,we consider the subspaces 

  0,2:0, lTC  and  

     ,<:0,:=;;0, 2
1,21,22 

L
wlTwlTL  

With .=
2

1,2
0

2

2 dtww
l

T

L   

 Assumption 1 .Let 0M  be an integer. 

  

1.  There exists a constant 0> such that  

  ,,
2

1=,

i
d

i

ji
d

ji

xtk     

 

 For all ;;,0, ddxt RR    

  

2.  The coefficients in L  and their derivatives in x  up to the order m  are measurable functions in   dT R0,  such 

that  

KkDVmKkD xx    1,  

 For any   ,,0, dxTt R with K a constant and 

xD  denoting the 

th  partial derivative operator with respect 

;;xto  

3.     .,;;0, ,21,22 mm WgWTLf  
 

Notation .For   ,==0,=
*1,21,21,2 WWWnotationtheusewem m 

where   ,
*1,2W  is the dual of 

1,2W . 

We make some assumption over the regularity of the data hh gandf  in (3.1) 

Assumption 2 .We assume 

  

1.    ,;;0, 0,22 lTLfh   

 

   2.  
0,2lgh    
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 Remark 3.1: In the above assumption 2,(1) can be replaced by the weaker assumption 

     ,;;0,
*1,22 lTLfh  where  *1,2l  denotes dual space of 

1,2l  . 

Remark 3 .The boundedness of the difference quotient of the difference quotient  

    ),(),(=,= 1 xtkhextkhxtkk i  
 

can be obtained from (2) in Assumption 1.In fact ,  

      ,,),(),(=, 1

ii rextk
x

xtkhextkhxtk 



   

for some   such that .<<0 h  Thus   KkimpliesKkx  /  

 We define the generalized solution of problem (10). 

 Definition 3.We say that      1,220,2 ;;0,;;0, lTLlTCu   is a generalized solution (3.1) if for all  Tt 0,   

                     dssfsusksusksuskgtu h

T

h  ,,,,=,
0

 
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 Notation. In the above definition, and in the sequel,  , denotes the inner product in 
0,2l . 

Theorem 3.1: Under (1)-(3) in assumption 1, problem (2.12) admits a unique generalised solution 
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With N a constant. 

We prove next an existence and uniqueness result for the solution of the discrete problem (2.10) ,providing ,in 

addition ,an estimate for the solution .With this result ,we show that the numerical scheme is stable ,ie ,informally 

,that the discrete problem’s solution remains bounded independently of space-step h .The result is obtained as 

consequence of Theorem 1,remaining only to show that ,within the discrete framework we constructed, (1)-(3) in 

assumption 1 holds. 

Theorem 3.2: Under (1)-(3) in Assumption 2 ,problem (3.1) admits a unique generalized solution on  T0,
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With N  a constant independent of h . 
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Owning to (1) and (2) in Assumption 1.Applying the Cauchy’s inequality with   to the second term of last 

member in (3.7),we obtain  
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with 0>  ,K constants,by taking   sufficiently small and the first property is proved  
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where the above writing convention is kept. Owing to theorem 1 the result follows. 

  

4. Approximation Proprieties 
In this section, we study the approximation proprieties of the numerical scheme (3.1). 

Theorem 4.1:Let m  be an integer strictly greater than  
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In order to prove theorem 4.1,we state two results.We recall a fundamental theorem on the embedding of 

)(,2 UW m
 into better spaces ,see,eg., [9]. 
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We also recall the following propriety of Sobolev space (see,eg [12]) 

Proposition 4.1: .Let    .,. ,2,2 VWvthenUofsubsetopenanisVIfUWv mm  We now prove Theorem 4.1. 
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Then ,by (4.1),(4.2),(4.3) and (4.4),owing to the particular geometry of the framework we have set, we finally obtain  
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where     ,?,? hhhhhh RxRBxB  and the proof for (??) is complete. The proof forthe0rem 4.2 is similar. 

 Finally, owing to the stability and consistency proprieties of the numerical scheme, we prove the convergence of 

the discrete problem’s solution to the exact problem’s solution and compute a convergence rate. The accuracy 

obtained is order 1. 

Theorem4.3: let the hypotheses of Theorems 4.1 and 4.2 be satisfied .Let m  be an integer strictly greater than 2/d  

,and denote by u the solution of (2.12) in Theorem 4.1 and by hu  the solution of (3.1) in Theorem 2.Assume also 
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for some constant N  independent of h .  
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Owing again to (2) in Assumption 1 and to Theorem 4.3,the result follows. 

Corollary 4.1: Let the hypotheses of Theorem 4.3 be satisfied and denote by u  the solution of (2.12) in Theorem 1 

and hu  the solution of (3.1) in Theorem 4.2. If there is a constant N independent h  independent of h such that  
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Proof:The result follows immediately from Theorem 4.3. 
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5. Conclusion 
Wang and Zeng [13] first use central difference scheme to discretize the nonlinear partial differential equation 

and later use Newton iteration method to solve the nonlinear system of equations. We discretize in space problem 

(2.12), with the use of a finite-difference scheme .By considering suitable discrete function space, we can show that 

the discrete framework we set is a particular case of the general framework, therefore holding an existence and 

uniqueness result for the solution of the discretized problem. We also investigate the consistency of the numerical 

scheme and prove that the difference quotients approximate partial derivatives (with accuracy of order 1).The result 

is obtained under stronger regularity assumptions, and using Sobolev embedding. 
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